Polynomials in one variable, Mathematics


In this section we will discuss about polynomials.  We will begin with polynomials in one variable.

Polynomials in one variable

Polynomials in one variable are algebraic expressions which contain terms in the form axwhere n refer to a non-negative (that means positive or zero) integer and a refer to a real number and is termed as the coefficient of the term.  The degree of a polynomial in one variable is the biggest exponent in the polynomial.

Note that we will frequently drop the "in one variable" part and only say polynomial. Here are instance of polynomials and their degrees.

5x12 - 2x6 + x5 -198x + 1                                                          degree : 12

x4 - x3 + x2 - x + 1                                                                    degree : 4

56x23                                                                                        degree : 23

5x - 7                                                                                       degree : 1

-8                                                                                              degree : 0

Thus, a polynomial doesn't have to contain all powers of x . Also, polynomials can contain a single term.

Here are some instances that aren't polynomials.

4x6 + 15x-8 +1

5 √ x - x+ x2

2/x +x3 -2 = 2x-1+x3-2

The first one isn't polynomial as it has a negative exponent and all exponents in a polynomial must be positive.

To illustrate why the second one isn't a polynomial rewrite it a little.

                               5 √ x - x+ x2 = 5x1/2-x+x2

By changing the root to exponent form we illustrates that there is rational root in the algebraic expression.  In the algebraic expression all of the exponents have to be integers in order for the algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression contain a radical in it then it isn't polynomial.

Let's rewrite the third equation to see why it isn't polynomial.

2/x +x3 -2 = 2x-1+x3-2

Thus, this algebraic expression really contains a negative exponent in it and it isn't allowed.  Another rule of thumb is if there are variables in the denominator of a fraction then the algebraic expression isn't a polynomial.

Another rule of thumb is if there are any variables in denominator of fraction then the algebraic expression isn't a polynomial.

Notice that it doesn't mean that radicals and fractions aren't let in polynomials. They only can't involve the variables. For example, the following is a polynomial

1854_Polynomials in one variable.png

There are many radicals & fractions in this algebraic expression, however the denominators of the fractions are only numbers and the radicands of each radical are only a numbers. In the algebraic expression each x appears into the numerator and the exponent is a positive (or zero) integer. Hence this is a polynomial.

Posted Date: 4/6/2013 2:20:26 AM | Location : United States

Related Discussions:- Polynomials in one variable, Assignment Help, Ask Question on Polynomials in one variable, Get Answer, Expert's Help, Polynomials in one variable Discussions

Write discussion on Polynomials in one variable
Your posts are moderated
Related Questions
we know that derivative of x 2 =2x. now we can write x 2 as x+x+x....(x times) then if we take defferentiation we get 1+1+1+.....(x times) now adding we get x . then which is wro

Five years ago a business borrowed $100,000 agreeing to repay the principal and all accumulated interest at 8% pa compounded quarterly, 8 years from the loan date. Two years after

Normally, sets are given in the various ways A) ROASTER FORM OR TABULAR FORM In that form, we describe all the member of the set within braces (curly brackets) and differen

Proper and Improper Fractions: Example: 3/8 proper fraction 8/3 improper fraction 3/3 improper fraction Here an improper fraction expressed as the sum of an in

define algorithm of pert and pert with suitable examples

what is the quotient of 20x to the power of 2 y-16x y to the power of 2+ 8xy and -8xy

Q. Determine the probability of tossing a head? Let B represent the event of tossing a heads with the nickel in example 2. Find P(B). Solution:   S = {(H, H), (H, T), (T, H

The winning team''s score in 21 high school basketball games was recorded. If the sample mean is 54.3 points and the sample standard deviation is 11.0 points, find the 90% confiden