Polynomials in one variable, Mathematics

Assignment Help:

Polynomials

In this section we will discuss about polynomials.  We will begin with polynomials in one variable.

Polynomials in one variable

Polynomials in one variable are algebraic expressions which contain terms in the form axwhere n refer to a non-negative (that means positive or zero) integer and a refer to a real number and is termed as the coefficient of the term.  The degree of a polynomial in one variable is the biggest exponent in the polynomial.

Note that we will frequently drop the "in one variable" part and only say polynomial. Here are instance of polynomials and their degrees.

5x12 - 2x6 + x5 -198x + 1                                                          degree : 12

x4 - x3 + x2 - x + 1                                                                    degree : 4

56x23                                                                                        degree : 23

5x - 7                                                                                       degree : 1

-8                                                                                              degree : 0

Thus, a polynomial doesn't have to contain all powers of x . Also, polynomials can contain a single term.

Here are some instances that aren't polynomials.

4x6 + 15x-8 +1

5 √ x - x+ x2

2/x +x3 -2 = 2x-1+x3-2

The first one isn't polynomial as it has a negative exponent and all exponents in a polynomial must be positive.

To illustrate why the second one isn't a polynomial rewrite it a little.

                               5 √ x - x+ x2 = 5x1/2-x+x2

By changing the root to exponent form we illustrates that there is rational root in the algebraic expression.  In the algebraic expression all of the exponents have to be integers in order for the algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression contain a radical in it then it isn't polynomial.

Let's rewrite the third equation to see why it isn't polynomial.

2/x +x3 -2 = 2x-1+x3-2

Thus, this algebraic expression really contains a negative exponent in it and it isn't allowed.  Another rule of thumb is if there are variables in the denominator of a fraction then the algebraic expression isn't a polynomial.

Another rule of thumb is if there are any variables in denominator of fraction then the algebraic expression isn't a polynomial.

Notice that it doesn't mean that radicals and fractions aren't let in polynomials. They only can't involve the variables. For example, the following is a polynomial

1854_Polynomials in one variable.png

There are many radicals & fractions in this algebraic expression, however the denominators of the fractions are only numbers and the radicands of each radical are only a numbers. In the algebraic expression each x appears into the numerator and the exponent is a positive (or zero) integer. Hence this is a polynomial.


Related Discussions:- Polynomials in one variable

Undetermined coefficients, In this section we will see the first method whi...

In this section we will see the first method which can be used to find an exact solution to a nonhomogeneous differential equation. y′′ + p (t ) y′ + q (t ) y = g (t) One of

Numerical integration - simpson rule, (1)Derive, algebraically, the 2nd ord...

(1)Derive, algebraically, the 2nd order (Simpson's Rule) integration formula using 3 equally spaced sample points, f 0 ,f 1 ,f 2 with an increment of h. (2) Using software such

Prove intercept of a tangent between two parallel, Prove that the intercept...

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre. Since Δ ADF ≅ Δ DFC ∠ADF = ∠CDF ∴ ∠ADC = 2 ∠CDF

Problem Solving, Max can paint a house in 3 hours. Saria can paint a house...

Max can paint a house in 3 hours. Saria can paint a house in 5 hours. working together, how long will it take both Saria and Max to paint a house?

Find a maximum flow and a minimum cut, Use the maximum flow algorithm to fi...

Use the maximum flow algorithm to find a maximum flow and a minimum cut in the given network, where the capacities of arc CF, EC , DE and BD are w = 13, x = 7, y =1, a

Shares and dividends, suresh invested rs.1080 in shares of face value rs.50...

suresh invested rs.1080 in shares of face value rs.50 at rs.54.After receiving dividend on them at 8% he sold them at 52.In each of the transaction he paid 2 % brokerage.Hpw much d

Find the curve on the surface - shortest arc lenght, (a) Find the curve on ...

(a) Find the curve on the surface z=x 3/2 joining the points(x,y,z)=(0,0,0) and (1,1,1) has the shortest arc lenght? (b) Use a computer to produce a plot showing the surface an

Application of related rates to economics and business, the wholesale p of ...

the wholesale p of string beans in dollars per bushel and the daily supply x in thousands of bushel,are related by the equation px+6x+7p=5950. if the supply is decreasing at the r

What does required to earn on his further science test in 93, Justin earned...

Justin earned scores of 85, 92, and 95 on his science tests. What does he required to earn on his further science test to have an average (arithmetic mean) of 93%? To earn an a

How long will it take the light to blink 405 times, The light on a lighthou...

The light on a lighthouse blinks 45 times a minute. How long will it take the light to blink 405 times? Divide 405 by 45 to get 9 minutes.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd