Polynomials in one variable, Mathematics

Assignment Help:

Polynomials

In this section we will discuss about polynomials.  We will begin with polynomials in one variable.

Polynomials in one variable

Polynomials in one variable are algebraic expressions which contain terms in the form axwhere n refer to a non-negative (that means positive or zero) integer and a refer to a real number and is termed as the coefficient of the term.  The degree of a polynomial in one variable is the biggest exponent in the polynomial.

Note that we will frequently drop the "in one variable" part and only say polynomial. Here are instance of polynomials and their degrees.

5x12 - 2x6 + x5 -198x + 1                                                          degree : 12

x4 - x3 + x2 - x + 1                                                                    degree : 4

56x23                                                                                        degree : 23

5x - 7                                                                                       degree : 1

-8                                                                                              degree : 0

Thus, a polynomial doesn't have to contain all powers of x . Also, polynomials can contain a single term.

Here are some instances that aren't polynomials.

4x6 + 15x-8 +1

5 √ x - x+ x2

2/x +x3 -2 = 2x-1+x3-2

The first one isn't polynomial as it has a negative exponent and all exponents in a polynomial must be positive.

To illustrate why the second one isn't a polynomial rewrite it a little.

                               5 √ x - x+ x2 = 5x1/2-x+x2

By changing the root to exponent form we illustrates that there is rational root in the algebraic expression.  In the algebraic expression all of the exponents have to be integers in order for the algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression contain a radical in it then it isn't polynomial.

Let's rewrite the third equation to see why it isn't polynomial.

2/x +x3 -2 = 2x-1+x3-2

Thus, this algebraic expression really contains a negative exponent in it and it isn't allowed.  Another rule of thumb is if there are variables in the denominator of a fraction then the algebraic expression isn't a polynomial.

Another rule of thumb is if there are any variables in denominator of fraction then the algebraic expression isn't a polynomial.

Notice that it doesn't mean that radicals and fractions aren't let in polynomials. They only can't involve the variables. For example, the following is a polynomial

1854_Polynomials in one variable.png

There are many radicals & fractions in this algebraic expression, however the denominators of the fractions are only numbers and the radicands of each radical are only a numbers. In the algebraic expression each x appears into the numerator and the exponent is a positive (or zero) integer. Hence this is a polynomial.


Related Discussions:- Polynomials in one variable

Sketch the exponental graph of f( x )=2x and g( x )= 1/2 , Example Sketc...

Example Sketch the graph of following f( x ) = 2x  and  g( x ) = ( 1 /2) x Solution Let's firstly make a table of values for these two functions. Following is

Determine the largest possible domain and inverse function, Consider the fu...

Consider the function f(x) =1/2 (2 x +2 -x ) which has the graph (a) Explain why f has no inverse function. You should include an example to support your explanation

Rounding, what is the result if 816.537 is rounded to the nearest tenth

what is the result if 816.537 is rounded to the nearest tenth

The stoichiometric reaction, Prove that a reaction following the rate law v...

Prove that a reaction following the rate law v = k[A] 2 is characterized by a linear plot of [P] t 1 versus t-l, where P is the product of the stoichiometric reaction A = P. Sho

Draw tangent graph y = tan ( x ), Graph y = tan ( x ). Solution In...

Graph y = tan ( x ). Solution In the case of tangent we need to be careful while plugging x's in since tangent doesn't present wherever cosine is zero (remember that tan x

Tests for an ideal index number, Tests for an Ideal Index Number 1. F...

Tests for an Ideal Index Number 1. Factor Reversal Test Factor Reversal Test indicates that when the price index is multiplied along with a quantity index that is factors

rules for solving linear in-equations - linear algebra, Explain what are t...

Explain what are the Rules for solving linear in-equations?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd