Path function of a nfa, Theory of Computation

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings:

1132_Path Function of a NFA1.png

Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an NFA with ε-transitions start by ?nding the set of states reachable from q using only ε-transitions and then, for each symbol σ of w (in order) ?nd the set of states reachable from those by an edge labeled σ and then the set of states reachable from those by any sequence of ε-transitions, etc.

Nothing else in the de?nitions need change. The automaton still accepts w if there is any computation on (q0,w) that terminates in a ?nal state after scanning the entire input. Equivalently, it accepts w if there is a path labeled w from the initial state to a ?nal state, which is to say, if δ(q0,w) includes any member of F. Note that the automaton of the example above will accept ‘ε' since state 2 is in ε-Closure(0) and, therefore in δ(0, ε).

Posted Date: 3/21/2013 2:49:26 AM | Location : United States







Related Discussions:- Path function of a nfa, Assignment Help, Ask Question on Path function of a nfa, Get Answer, Expert's Help, Path function of a nfa Discussions

Write discussion on Path function of a nfa
Your posts are moderated
Related Questions
https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%281%3D2%29.The+value+x%3D0+and+is+used+to+stop+the+algerithin.The+calculation+is+reapeated+using+values+of+x%3D0+is+in

What are the benefits of using work breakdown structure, Project Management

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

implementation of operator precedence grammer

constract context free g ={ a^n b^m : m,n >=0 and n

examples of decidable problems