Operation of mosfet, Electrical Engineering

Operation of MOSFET

The operation of a metal-oxide-semiconductor field-effect transistor which is abbreviated as MOSFET can be separated into three modes, depending upon the voltages at the terminals. In the following conversation, a simplified algebraic model is used which is accurate only for old technology. Modern MOSFET characteristics need computer models that have rather much more complex behavior.

For an enhancement-mode, n-channel MOSFET, the 3 operational modes that are:

  1. Cut off,
  2. Sub threshold, or
  3. Weak-inversion mode

While VGS < Vth:

In which Vth is the threshold voltage of the device.

As per to the basic threshold model transistor is turned off and there is no conduction in between drain and source. Actually, the Boltzmann distribution of electron energies permits some of the more energetic electrons at the source to enter the channel and flow to the drain, resultant in a sub threshold current which is an exponential function of gate-source voltage. Whereas the current between drain and source should ideally be zero while the transistor is being employed as a turned-off switch, there is a weak-inversion current, occasionally termed as sub threshold leakage.

In weak inversion the current changes exponentially with gate-to-source bias VGS as described approximately by:

ID ≈ ID0e ((VGS - Vth) / n VT),

In which ID0 = current at VGS = Vth and the slope factor n is described by

n = 1 + CD / COX,

Along with CD = capacitance of the depletion layer and COX = capacitance of the oxide layer. There is no drain voltage dependence of the current once VDS > > VT, in a long-channel device however as channel length is reduced drain-induced barrier lowering introduces drain voltage dependence which depends in a complex way upon the device geometry (for instance, the channel doping, the junction doping and so on). Commonly, threshold voltage Vth for this mode is described as the gate voltage at which a selected value of current ID0 takes place, for instance, ID0 = 1 μA, that may not be similar Vth-value employed in the equations for the following modes.

A number of micro power analog circuits are designed to take benefit of sub threshold conduction. Through working in the weak-inversion region, the MOSFETs in these types of circuits deliver the highest possible trans conductance-to-current ratio, that are: 

gm / ID = 1 / (nVT), almost that of a bipolar transistor.

Posted Date: 1/11/2013 1:21:20 AM | Location : United States

Related Discussions:- Operation of mosfet, Assignment Help, Ask Question on Operation of mosfet, Get Answer, Expert's Help, Operation of mosfet Discussions

Write discussion on Operation of mosfet
Your posts are moderated
Related Questions
Q. Explain Analog communication system? Analog signals in an analog communication system can be transmitted directly via carrier modulation over the communication channel and d

Explain cascading of multiple PICS 8259.  The 8259A adds 8 vectored priority encoded interrupts to the microprocessor. It can be expanded to 64 interrupt requests by using one

Q.   Explain the different types of probes used in cathode Ray Oscilloscope (CRO). Sol. probes: The probe performs the very important function of connecting the test circuit

Microcomputer A microprocessor is a  general purpose central processing  until of a digital  computer system. It has  arithmetic  logical unit  control circuits and a set of r

Discuss in detail the several energy resources and their availability. How does a Rankine cycle differ from a modified Rankine cycle? Write down the mathematical expression of m

Q. Explain about Half Duplex Transmission? Half Duplex Transmission A half-duplex channel can receive andsend, though not at the same instance. It's like a one-lane bridge w

Q. A transformer is rated 10 kVA, 220:110 V (rms). Consider it an ideal transformer. (a) Compute the turns ratio and the winding current ratings. (b) If a 2-load resistance

The circuit is altered by replacing the capacitor, C1 with an inductor of 150mH and left with the switch in position (a) for a long time. At time t=0, the switch is moved from posi

With a maximum excess delay of and a chip duration of , the multipath components fall in delay bins. This means that we experience leakage of energy between chips and the channel i

The circuit shown below is a prototype 4 th - order low-pass filter which is required to meet the specification given. However the specification is not met due to inadequate atten