Non-determinism - recognizable language, Theory of Computation

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the next state is fully determined by the current state and input symbol. As we saw in the previous section, this simpli?es the proof that the DFA accepts a speci?c language. There are many circumstances, though, in which it will be simpler to de?ne the automaton in the ?rst place if we allow for there to be any one of a number of next states or even no next state at all. Thus there may be many out edges from a given node labeled with a given symbol, or no out edges from that node for that symbol. Such FSA are called non-deterministic because the next step of a computation is not fully determined by the current state and input symbol-we may have a choice of states to move into.

De?nition 1 (NFA without ε-Transitions) A FSA A = (Q,Σ, T, q0, F) is non-deterministic iff either

• there is some q ∈ Q, σ ∈ Σ and p1 = p2 ∈ Q for which hq, p1, σi ∈ T and hq, p2, σi ∈ T,

• or there is some q ∈ Q, σ ∈ Σ for which there is no p ∈ Q such that hq, p, σi ∈ T

Posted Date: 3/21/2013 2:13:19 AM | Location : United States







Related Discussions:- Non-determinism - recognizable language, Assignment Help, Ask Question on Non-determinism - recognizable language, Get Answer, Expert's Help, Non-determinism - recognizable language Discussions

Write discussion on Non-determinism - recognizable language
Your posts are moderated
Related Questions
conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat

constract context free g ={ a^n b^m : m,n >=0 and n

Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1  and G2. The two grammars can be shown to




The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in