Monte-carlo simulation, Financial Management

Monte-Carlo Simulation

Let us, for a shortwhile, leave the illustration for determining the price and consider a simpler illustration for understanding the Monte-Carlo method of simulation.

Example 

A dealer in refrigerators wants to use a scientific method to reduce his investment in stock. The daily demand for a refrigerator is random and varies from day to day in an unpredictable pattern. From the past sales records, the dealer has been able to establish a probability distribution of the demand as given below:

Daily demand (units)

2

3

4

5

6

7

8

9

10

Probability

0.06

0.14

0.18

0.17

0.16

0.12

0.08

0.06

0.03 

The dealer also knows from his past experience that the lead time is almost fixed at 5 days. The dealer would like to study the implications of a possible inventory policy of ordering 30 units, whenever the inventory at the end of the day is 20 units. The inventory on hand is 30 units and the simulation can be run for 25 days. Use the following random numbers.

Random Numbers

03

38

17

32

69

24

61

30

03

48

88

71

27

80

33

90

78

55

87

16

34

45

59

20

59

When we conduct simulation runs, we use random numbers to simulate the actual demand. How do we assign, say, two digit random numbers chosen for a particular demand and also take into account the probabilities known? This is done by calculating the cumulative probabilities at each level of demand as shown below:

Daily Demand (units)

Probability

Cumulative Probability

Random numbers allotted

2

3

4

5

6

7

8

9

10

0.06

0.14

0.18

0.17

0.16

0. 2

0.08

0.06

0.03

0.06

0.20

0.38

0.55

0.71

0.83

0.91

0.97

1.00

00 - 05

06 - 19

20 - 37

38 - 54

55 - 70

71 - 82

83 - 90

91 - 96

97 - 99

The random numbers have been allotted on the basis of the following logic. Looking at the cumulative probabilities we can say that a number between 0 and 5, or to be exact, the numbers 0, 1, 2, 3, 4 and 5 (six numbers in all) signify a demand level of 2 units. Similarly, the random numbers 6 to 19 (i.e. 14 numbers) correspond to the demand level of 3 units and so on. The result of simulation trials conducted for 25 days is  tabulated below:

Day

Random no. generated

Inventory at the beginning of the day(units)

Daily demand (units)

Inventory at the end of the day (units)

Lost sales (units)

Stocks received

Qty. ordered

1

2

3

4

5

6

7

8

1

03

30

2

28

-

-

-

2

38

28

5

23

-

-

-

3

17

23

3

20

-

-

30

4

32

20

4

16

-

-

-

5

69

16

6

10

-

-

-

6

24

10

4

6

-

-

-

7

61

6

6

0

-

-

-

8

30

0

4

0

4

30

-

9

03

30

2

28

-

-

-

10

48

28

5

23

-

-

-

11

88

23

8

15

-

-

30

12

71

15

7

8

-

-

-

13

27

8

4

4

-

-

-

14

80

4

7

0

3

-

-

15

33

0

4

0

4

-

-

16

90

0

8

0

8

30

-

17

78

30

7

23

-

-

-

18

55

23

6

17

-

-

30

19

87

17

8

9

-

-

-

20

16

9

3

6

-

-

-

21

34

6

4

2

-

-

-

22

45

2

5

0

3

-

-

23

59

0

6

0

6

30

-

24

20

30

4

26

-

-

-

25

59

26

6

20

-

-

30

Column 2 of the table indicates the series of random numbers drawn from a random number table. The demand corresponding to the random number has been listed in column 4. Though the table contains the stock position, sales lost, quantities received and an order for each trial, how do we evaluate the financial implication of the inventory policy which has fixed the reorder point at 20 units and the ordering quantity at 30 units? To do this, we would have to gather details regarding ordering cost, carrying costs and storage costs and determine the total cost. The policy could then be varied and the total cost determined for alternative policies through simulation. The most acceptable policy would be the one that shows the least total cost (an alternative method would be to compare the average total cost for 25 days). Even without assigning any costs, we can observe from the table that the policy of ordering 30 units whenever stock falls to 20 units is not desirable as quite a number of lost sales units have arisen over a short period of 25 days.

Posted Date: 9/15/2012 5:41:18 AM | Location : United States







Related Discussions:- Monte-carlo simulation, Assignment Help, Ask Question on Monte-carlo simulation, Get Answer, Expert's Help, Monte-carlo simulation Discussions

Write discussion on Monte-carlo simulation
Your posts are moderated
Related Questions
What is the difference between business risk and financial risk? Business risk considers to the uncertainty a company has regarding to its operating income (as well termed as ear

Q. Explain Dividend Policy Decision? Dividend Policy Decision: - The financial management has to make a decision as to which portion of the profits is to be distributed as divi

"A" Round Financing "A" Round Financing is the first main round of business financing through private equity investors or venture capitalists. In private equity investing, an "

What is the intuition of discounting the several cash flows in the APV model at fixed discount rates? The APV model is a value-additivity method where total value is defined by t

Protected Put A protected put would involve a long put and a long stock. For example - ONGC. Underlying stock = Rs. 809 Buy Mar Rs. 900 Put @ Rs.68.8   Total cos

Explain about the term- Contingent liabilities Under IAS 37 provisions, contingent assets and contingentliabilities, contingent liabilities aren't recognised in the financia

A futures contract is a contract to purchase (and sell) a particular asset at a fixed price in a future time period. There are two parties for every futures contract - the seller o

What is Capital Budgeting Capital Budgeting is probably the most financial decision for a firm. It relates to selection of an asset or investment proposal or course of action

How does a sinking fund function in the retirement of an outstanding bond issue? Where a company puts payments that are then used to buy back outstanding bonds is known as a si

Q. What do you mean by Variable working capital? Permanent or fixed: Permanent or fixed working capital is the minimum amount which is required to ensure effective utilization