Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Ant Colony Optimization for Optimization of Route path taken
Ant Colony Algorithm is a potential candidate for coupled, 3D optimisation. Ant Colony Algorithm enjoys the overall optimization capacity and the parallel implementation. The purpose of this project is to use Ant Colony Algorithm to create a route optimization.
Ant Colony Optimization is a probabilistic technique for solving difficult combinatorial optimization problems. The main idea that is used in Ants Colony Algorithm is adapted from the ants' pheromone trails-laying behaviour, which is an indirect form of communication as a result of modifications of the environment. In the real world, ants communicate with one another through detecting pheromone trails. When an ant passes through a route, it deposits a sample amount of pheromone onto the path, marking the path with a trail of pheromones. However, these pheromones are temporary and the intensity of the pheromones will evaporate over time. The ants then determine their movements by gauging the density of the pheromones on a path, with the tendency of the ants to follow the paths where intensity of pheromones trails is higher. This means that the higher density of pheromone trails on a road, the more attractive that road will be to the ants. Pheromone density tends to be higher on a shorter path. As more ants follow a given trail, more pheromones is left on that trail, and the probability that other ants will follow the same trail will be higher. The main idea of this self-catalyzing activities is that the path that most approximates the optimal scenario carries more pheromone, which makes it more attractive in the next cycle.
Task:
Design a matlab code, using Ant Colony Algorithm, to obtain the most optimized path with the shortest distance taken from the starting node to the ending node. Your optimized path has to pass through nodal points to reach the final destination. (The coordinates of all the nodes are provided) and you have to vary the amount of pheromones to suit the path travelled. • Create the model with the coordinates provided and treat this coordinates as your available nodes• Allow user input to select starting node(departure) and ending node(destination)• Create segments where your path may travel• Include constraints to limit your random path to bearings of +-45degree from your current location to your destination• Provide a simulation of the model created• Compare data with Dijkstra Algorithm to check the path of convergence
Algorithms: Before writing any computer program, it is very useful to first outline the steps which will be essential. An algorithm is the series of steps required to solve a
Statement of Problem I need to realise vector-array multiplication in Simulink. This has been realised in Matlab but because the process yielding the received signal is in Simu
An individual with $10,000 to invest has identi?ed three mutual funds as attractive opportunities. Over the last ?ve years, dividend payments (in cents per dollar invested) have be
A filter described by the equation: y(n) = x(n) + x(n-1) + 0.9 y(n-1) - 0.81 y(n-2) (a) Find the transfer function H(z) for the filter and find the poles and zeros of the fil
Matlab Programming Vector Algebra : Create a program package for calculation of distances and intersections of lines and planes. Plot the results in a graphical representation
5xy-8-3x
Why Function stubs are used?
Obtaining the Partial Fraction Expansion of the Z-Transform expression and to find its Inverse Z-Transforms using MATLAB
Command Window: To the left of the Command Window, there are 2 tabs for the Current Directory Window and Workspace Window. If the Current Directory tab is selected, the files
Write a MATLAB program to find the undamped natural frequencies and modes of an electric car treating it as a four degree of freedom system. Determine the undamped natural frequenc
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd