Link functions, Advanced Statistics

Link functions:

The link function relates the linear predictor ηi to the expected value of the data. In classical linear models the mean and the linear predictor are identical. However, when dealing with counts and the distribution is Poisson, we must have the Poisson distribution parameter satisfy µi > 0 so that the identity link is less attractive, partly because ηi may be negative while µi > 0 must not be. It is advisable to utilize the log link η = log(µ) in this case. Similarly, when dealing with binomial distribution, the parameter p of probability of success in a single trial is restricted to be in (0,1) and the link function serves the purpose to map the interval (0,1) on to R1 . Therefore, links like the following (here µ is replaced by p):

614_Link functions6.png

have been suggested and widely used.

Let us illustrate the most commonly met examples of GLM together with describing the types of response variable, distribution, and the link function:

- Traditional Linear Model:

i) response variable: continuous

ii) distribution: normal

iii) link function: identity : η = µ

- Logistic Regression:

i) response variable: probability ( µ)

ii) distribution: binomial

iii) link function: logit: η = log( µ/1-µ)

- Poisson Regression in Log Linear Model:

i) response variable: count

ii) distribution: Poisson
iii) link function: η = log(µ)
- Gamma model with Log Link:
i) response variable: a positive continuous variable
ii) distribution: Gamma
iii) link function: η = log(µ)

Intermezzo and history. If you read di?erent references, you may get confused about the terminology. You may have already come across the term "general linear model" in your introductory Statistics courses or in some reference books. Note, however, that this term refers to a conventional linear regression model for a continuous response variables given continuous and/or categorical predictors. It includes multiple linear regression, as well as ANOVA and ANCOVA. In SAS, such models are ?t by least squares and weighted least squares using (typically) proc glm. HOWEVER, the "generalized linear model" we are speaking about here, refers to the larger class discussed in this section. The ?rst widely used software package for ?tting these models was called GLIM. Because of this program, "GLIM" became a well-accepted abbreviation for generalized linear models, as opposed to "GLM". Since we clari?ed the confusion though, we will continue using "GLM" for generalized linear models since many recent references use it. Today, generalized linear models are ?t by many packages, notably by the SAS proc genmod. (End of intermezzo).

One of the advantages of the full probabilistic speci?cation of the GLM model is that ML Estimation suggests itself as a natural general estimation method. We have to maximize the log-likelihood

2487_Link functions2.png

where β is linked to θ through the link function. Recall that the main parameter- vector of interest is β, the vector of regression coeffcients in the relation ηi = g(µi) = x0

1971_Link functions3.png

There is nowadays, with the availability of modern computing power, seldom any reason to consider estimators of β that are di?erent from the MLE. By using the chain rule, we get for the components of the score function:

1533_Link functions4.png

The (expected) Fisher information matrix is given then by

687_Link functions5.png

The ML Estimator is de?ned by equating the score function to zero. Numerically, the equation is solved by applying iterative procedures which we discuss next.

Posted Date: 2/27/2013 1:11:48 AM | Location : United States







Related Discussions:- Link functions, Assignment Help, Ask Question on Link functions, Get Answer, Expert's Help, Link functions Discussions

Write discussion on Link functions
Your posts are moderated
Related Questions
Multiple comparison tests : Procedures for detailed examination of the differences between a set of means, generally after a general hypothesis that they are all equal has been rej

Multidimensional scaling (MDS)  is a generic term for a class of techniques or methods which attempt to construct a low-dimensional geometrical representation of the proximity matr

The procedure which targets to use the health and health-related data which precede diagnosis and/or confirmation to identify possible outbreaks of the disease, mobilize a rapid re

Kendall's tau statistics : The measures of the correlation between the two sets of rankings. Kendall's tau itself (τ) is the rank correlation coefficient based on number of inversi

Literature controls : The patients with the disease of interest who have received, in the past, one of two treatments under the investigation, and for whom the results have been pu

Generalized method of moments (gmm) is the estimation method popular in econometrics which generalizes the method of the moments estimator. Essentially same as what is known as the

Reciprocal transformation is a transformation of the form y =1/x, which is specifically useful for certain types of variables. Resistances, for instance, become conductances, and

The scatter plots of SRES1, RESI1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plots sho

Longitudinal data : The data arising when each of the number of subjects or patients give rise to the vector of measurements representing same variable observed at the number of di

Bayesian inference : An approach to the inference based largely on Bayes' Theorem and comprising of the below stated principal steps: (1) Obtain the likelihood, f x q describing