Limits, Mathematics

Assignment Help:

Limits

The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some particular point 'a'. The question is, if we give values to x which are nearer and nearer to 'a', will the values of f(x) come nearer and nearer to any particular value? Suppose we define a function f(x) as:

                            f(x) = 2x

It can be seen that as we give values to x which are nearer and nearer to 0, then the value of f(x) also comes nearer and nearer to 0.

If x approaches a value 'a', f(x) approaches some number L, then we say that the limit of f(x) approaches L. This is symbolically written as

1669_limit.png        is to be read as 'x approaches a'.

Sometimes we may allow x to take values which are larger and larger, without any limit. This is symbolically written as  1954_limit1.png (read as 'x approaches infinity'). If f(x) approaches a limit L as  1967_limit2.png , then we write

1129_limit3.png

In some cases, it may so happen that as x approaches a value, the value of the function f(x) may become larger and larger without any limit. This is symbolically written as:

21_limit4.png

Example 

Suppose f(x) = 2x2 - 1

As x approaches value 1, f(x) approaches the value 1,

739_limit5.png

This is graphically represented below.

Figure 

1862_limit6.png


Related Discussions:- Limits

MENSURATION, HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT ...

HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT TO BE SUBMITTED BY 8;00 AM

Problem solving, Sales price of a compact disc player is $200, each new cd ...

Sales price of a compact disc player is $200, each new cd is on sale for $12. kyle purchases a player and some cds for $224. how many cds were purchased?

Calculate latest triangular area sail for his boat, Rick is order a latest ...

Rick is order a latest triangular sail for his boat. He needs knowing the area of the sail. Which formula will he use? The area of a triangle is 1/2 times the length of the bas

How did rousseau resolve the conflict, How did Rousseau resolve the conflic...

How did Rousseau resolve the conflict between the rights of the individual and the responsibilities of government (the state)? How did the ideas about universal education and socia

Second order differential equation, Write the subsequent 2nd order differen...

Write the subsequent 2nd order differential equation as a system of first order, linear differential equations. 2 y′′ - 5 y′ + y = 0  y (3) = 6  y′ (3) = -1  We can wri

Example for introducing counting, Four-year-old Mariamma was reciting numbe...

Four-year-old Mariamma was reciting number names - some of them in order, and others randomly. The child's aunt, sitting nearby, asked her, "Can you write 'two'?" She said she coul

Example of factoring quadratic polynomials, Factor following polynomials. ...

Factor following polynomials.                               x 2 + 2x -15 Solution x 2 +2x -15 Okay since the first term is x 2 we know that the factoring has to ta

Rarrrrrrrrrr, i need help in writing about a magic car?..

i need help in writing about a magic car?..

Prove that sec2+cosec2 can never be less than 2, Prove that sec 2 θ+cosec 2...

Prove that sec 2 θ+cosec 2 θ can never be less than 2. Ans:    S.T Sec 2 θ + Cosec 2 θ can never be less than 2. If possible let it be less than 2. 1 + Tan 2 θ + 1 + Cot

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd