Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Booth algorithm, what is boot algorithm and some example

what is boot algorithm and some example

Program, circular queue using c

circular queue using c

Define heap, HEAP  A heap is described to be a binary tree with a key i...

HEAP  A heap is described to be a binary tree with a key in every node, such that  1-All the leaves of the tree are on 2 adjacent levels. 2- All leaves on the lowest leve

Explain multidimensional array, Multidimensional array: Multidimensional a...

Multidimensional array: Multidimensional arrays can be defined as "arrays of arrays". For example, a bidimensional array can be imagined as a bidimensional table made of elements,

Decision tree, . Create a decision table that describes the movement of inv...

. Create a decision table that describes the movement of inventory

Determine the area subdivision method, Area Subdivision Method In this ...

Area Subdivision Method In this method, the viewport is examined for clear decisions on the polygons situated in it, in regard to their overlap and visibility to the viewer. Fo

Array and two-dimensional array, Q. Describe the term array.  How do we rep...

Q. Describe the term array.  How do we represent two-dimensional arrays in memory?  Explain how we calculate the address of an element in a two dimensional array.

Java code and algorythem, Suppose that you want to develop a program that a...

Suppose that you want to develop a program that accepts a postfix expression and asks values for variables in the expression. Then you need to calculate the answer for the expressi

Calculates partial sum of an integer, Now, consider a function that calcula...

Now, consider a function that calculates partial sum of an integer n. int psum(int n) { int i, partial_sum; partial_sum = 0;                                           /* L

Graph with n vertices will absolutely have a parallel edge, A graph with n ...

A graph with n vertices will absolutely have a parallel edge or self loop if the total number of edges is greater than n-1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd