Inverse functions, Algebra

Assignment Help:

In previous section we looked at the two functions  f ( x) = 3x - 2 and g ( x )= x/3 + 2/3 and saw that

                                         ( f o g ) ( x ) =(g o f )( x ) = x

and as noted in that section it means that these are very special functions. Let's see what makes them so special.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5 ⇒     g ( -5) = -5/3 + 2/3 = -3/3 = -1

g ( 2) = 2/3 +2/3 = 4 /3       ⇒ f ( 4 /3)=3(4/3 ) - 2 = 4 - 2 = 2

In first one we plugged x = -1 into f ( x ) and got a value of -5. Then we turned around and

Plugged x = -5 into g ( x ) and got a value of -1, the number that we begin with.

In the second one we did something similar.  Here we plugged x = 2 into g ( x ) and got a value of 4/3 , we turned around & plugged this into f ( x ) & got a value of 2, that is again the number that we begin with.

Note that here we actually are doing some function composition.

The first one is actually,

                                        ( g o f ) ( -1) = g [f ( -1)]=  g [-5] = -1

and the second one is,

                          ( f o g ) ( 2) =f [g ( 2)]= f [ 4/3 ] = 2

So, just what is going on here?  In some manner we can think of these two functions as undoing what the other did to number.  In the first one we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g ( x ) and in some way g( x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Before formally explaining inverse functions and the notation which we're going to employ for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Inequalities, Labrador retrievers that compete in field trials typically co...

Labrador retrievers that compete in field trials typically cost $2,000 at birth. Professional trainers charge $400 to $1,000 per month to train the dogs. If the dog is a champion b

Slope, what is point slope form

what is point slope form

Rational inequalities, In this section we are going to solve inequalities w...

In this section we are going to solve inequalities which involve rational expressions. The procedure for solving rational inequalities is closely identical to the procedure for sol

Example of least common denominator, Example :   Solve (x+ 1 / x - 5 )≤ 0 ....

Example :   Solve (x+ 1 / x - 5 )≤ 0 . Solution Before we get into solving these we need to point out that these don't solve in the similar way which we've solve equations

Help, Tank A contains four times as much as Tank B. Tank C contains 32 L mo...

Tank A contains four times as much as Tank B. Tank C contains 32 L more than Tank A. The three Tanks contain 482 L of water in all. How many liters of water does Tank A contain?

Example of equations with more than one variable, y = 4 - 3x /1 + 8x for x....

y = 4 - 3x /1 + 8x for x. Solution This one is very alike to the previous instance.  Here is the work for this problem. y + 8xy = 4 - 3x 8xy + 3x = 4 - y X(8 y +3)

Rational expressions, I am looking the domain of g^2-6g-55/g. The denominat...

I am looking the domain of g^2-6g-55/g. The denominator here can be also be written as 1g, right?

Graphing, I do not understand graphing at all.

I do not understand graphing at all.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd