Introduction to knowing your maths learner, Mathematics

Assignment Help:

INTRODUCTION : The other day I overheard 6-year-old Ahmed explaining to his older sister about why swallowing the seeds of an orange is harmful. He said, "The seed will become a plant in your tummy and then a big tree, and then you'll burst. So be careful!"

Well! Well! Doesn't this raise questions like how often do we adults make assumptions about the ways in which children think?

And then, how many of us think about questions like how a primary school child learns? Do most children follow a similar learning path from preschool through the primary years of education? Do they go through the same stages of development? In this unit, we shall examine these questions.

We will explore the qualitatively different ways in which children think and learn, as well as the general nature of young children. We will also examine how the adult-child gap shapes our attitudes towards children. We begin with the generally accepted fact that a child starts learning from the time she is born.

Therefore, she already knows quite a bit when she joins school. In this theory we outline the major developmental stages that children go through from the preschool through the primary years of education. Although these stages are characteristic of children's general cognitive development, we have discussed them with particular reference to Mathematics learning. We make a case for viewing the teaching of preschool and primary school mathematics from the perspective of the child, and not from the viewpoint of pure subject content and pedagogy. We bring you instances to show you that as children explore the world around them, mathematical experiences present themselves alongside others.

Through this unit we also hope to sensitise you to issues raised by the following questions: what factors influence a child's attitude towards mathematics? Why does a child start being afraid of, and feel disinterested in, mathematics? How does classroom teaching influence or cause these attitudes?

Thus, the thrust of the unit is that a teacher of primary school children must be sensitive to issues that determine a child's ability to learn mathematics, as well as issues that influence a child's attitudes towards mathematics. We will reinforce what we say in this unit through the examples that we'll discuss in the rest of the course.

One point that we'd like to mention about the unit is that we have tried to present arguments to support our understanding. Please feel free to disagree with us. But make sure that you too have sound arguments to back your opinions.


Related Discussions:- Introduction to knowing your maths learner

Graph for the sequence - sequences and series, Graph for the Sequence F...

Graph for the Sequence First we wish to think about the term graphing a sequence. To graph the sequence {a n } we plot the points {n, a n } as n ranges over every possible valu

Childrens errors are a natural and inevitable part, Childrens errors are a ...

Childrens errors are a natural and inevitable part of their process of learning. In the process of grasping new concepts, children apply their existing understanding, which may

Percents, If 2/3 of a number is 24 then 1/4 of a number is...

If 2/3 of a number is 24 then 1/4 of a number is...

Integration, Integration We have, so far, seen that differential ...

Integration We have, so far, seen that differential calculus measures the rate of change of functions. Differentiation is the process of finding the derivative

Find poq of tangents drawn to the circle, In figure, O is the centre of th...

In figure, O is the centre of the Circle .AP and AQ two tangents drawn to the circle. B is a point on the tangent QA and ∠ PAB = 125 ° , Find ∠ POQ. (Ans: 125 o ) An s:

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Fractions, question paper on fractions

question paper on fractions

Sequence and series, how can we prove that an absolute convergent series is...

how can we prove that an absolute convergent series is convergent but the converse is not true.

Infinite limits, Infinite Limits : In this section we will see limits who...

Infinite Limits : In this section we will see limits whose value is infinity or minus infinity.  The primary thing we have to probably do here is to define just what we mean w

Geometry, finding missing values from given triangle diagra m..

finding missing values from given triangle diagra m..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd