Induction motor, Electrical Engineering

A very widely used alternative form of synchronous motor is the 'induction motor'. This has the advantage that it does not require an auxiliary motor to run the rotor up to synchronous speed.

895_induction motor.png

The rotor consists of stout copper (or aluminium) conductors arranged in the form of a cylindrical cage (commonly known as a 'squirrel cage' rotor). These are laid in slots in a soft iron core that focuses the magnetic flux produced by the stator across the bars of the cage and all the bars are electrically connected together at each end by copper (or aluminium) rings.

Three stator windings arranged at 120° to each other around the rotor are energised by the three phases of an ac supply and this creates a magnetic field that rotates at the frequency of the supply.

1943_induction motor1.png

With the rotor stationary, the rotating magnetic field induces an emf in the cage that in turn drives a current through its conductors (an 'eddy' current). This current reacts against the magnetic field to produce a torque that causes the rotor to turn in the direction of the rotating magnetic field.

If the rotor were to rotate at the same speed as the rotating magnetic field, then it would not experience any  change in the magnetic field and no emf would be induced in the rotor.

No current (and therefore no torque either) would then be induced in the rotor.

Some torque will always be needed to overcome mechanical losses (friction, air resistance etc) in addition to any mechanical load applied to the motor, so in practice the rotor always turns more slowly than the rotating magnetic field.

The fractional difference in speed between the rotational speed of the magnetic field (the synchronous speed) and that of the rotor is called the 'slip'.

Slip = Synchronous speed - Rotor speed

                Synchronous speed

NOTE:

(1)  The larger the torque applied to the motor, the greater the slip required to produce the torque needed.

(2)  Because of the slip, the frequency of the induced currents in the rotor is  less than that of the applied stator voltage. The induced voltage is proportional to the rate of change of the magnetic field strength as 'seen' by the rotating armature.

(3)  If the slip is small, the frequency of the currents flowing in the rotor is low and so the effect of any inductance of the rotor is negligible. (Z=j  L). In this case, only the resistance of the rotor limits the current in the rotor (and hence the torque produced by the motor).

So: Torque  =    K.S/R

where K is a constant for a given machine.

Advantages:  no brushes or slip rings are required - relatively easy and cheap to make. Reliable (no sliding electrical contacts). Smooth torque output.

Disadvantages:  operates at one speed (determined by the frequency of the three-phase ac supply used). Needs electronic controllers to produce variable frequency supplies if required to operate at variable speeds.

Normally needs three-phase supplies (it is possible to use single phase supplies from which other phases can be derived by phase-shifting circuits).

Applications: aircraft fuel pumps, (that are immersed in fuel to aid cooling), fans, conveyer belt drives, pumps etc.

Posted Date: 8/27/2012 7:12:58 AM | Location : United States







Related Discussions:- Induction motor, Assignment Help, Ask Question on Induction motor, Get Answer, Expert's Help, Induction motor Discussions

Write discussion on Induction motor
Your posts are moderated
Related Questions
Modify the design of the circuit shown in FIGURE and draw a circuit diagram to provide rotary actuation in both directions using a single direction pump (to replace the bi-directio

A 100-kW, 250-V shunt generator has an armature-circuit resistance of 0.05  and a field- circuit resistance of 60 . With the generator operating at rated voltage, determine the i

Please suggest recent application of DCS WHICH I CAN USE AS A TOPIC OF MY Ph.D.

Give the applications of carbon. Carbon : These materials used in the field of electrical engineering are manufactured from graphite and the other forms carbon as coal and so

Q. Ac measurements with constant voltage amplitude reveal that the total core loss of a certain magnetic circuit is 10 W at f = 50 Hz, and 13 Wat f = 60 Hz. Find the total core los

Show how a typical DMA controller can be interfaced to an 8086/8085 based maximum mode system. For 8088 in maximum mode: The RQ/GT1 and RQ/GT0 pins are utilized to issue DMA

explain the operation of a detector probe

Diffusion Capacitance Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carr

Q. Write notes on clamping ? Clamping network shifts (clamps) a signal to a different d.c level, that is it introduces a d.c. level to an a.c signal. Hence, the clamping networ

CURRENTLY, orthogonal frequency division multiplexing (OFDM) is emerging as the preferred modulation technique in modern high data rate broadband wireless mobile communication syst