Fixed and adaptive - optimal filtering, Electrical Engineering

Optimal Filtering

1389_Fixed and Adaptive.png

A system identi?cation structure is shown in Figure 1. The discrete-time signal [ ] forms the input to an unknown system represented by a moving average, FIR, ?lter with parameters, {ω01 ωn} . The output of the unknown system is given by

466_Fixed and Adaptive1.png

This can be represented more concisely in vector notation as

1891_Fixed and Adaptive2.png

where ω and x[k] are Nw + 1 element column vectors, underlines are used to denote vector quantities and the superscript (·)T represents a vector transpose.

A noise signal n[k] is added at the output of the system to yield a realistic measured output signal z[k]. An optimum ?lter is to be designed which operates on the input signal x[k] and measured output signal z[k] to yield the closest match to the unknown system. The optimum ?lter is assumed to be a moving average ?lter with the same number of parameters as the unknown system, i.e. opt.

This problem arises in many applications, for example control of some machinery plant, or of acoustic and electrical echoes in telecommunications. The Wiener solution is found by minimising the mean-square error between z[k] and y[k], where y[k] is the output of the optimum ?lter driven by x[k]. The circum?ex is used to denote that the output of the optimum ?lter is an estimate of the output of the unknown system.

If x[k]and n[k] are assumed to be uncorrelated stationary random discrete signals then the mean square error is de?ned as

2274_Fixed and Adaptive3.png

where {·} is the statistical expectation operation, which to a ?rst approximation can be considered to be an average. The right hand side of equation (1) contains a vector of crosscorrelation components and a matrix of autocorrelation components, i.e.

555_Fixed and Adaptive4.png

Differenting equation (1) with respect to opt and setting the result to zero yields the optimum Wiener ?lter solution which is given by

596_Fixed and Adaptive5.png

Posted Date: 2/27/2013 6:32:29 AM | Location : United States







Related Discussions:- Fixed and adaptive - optimal filtering, Assignment Help, Ask Question on Fixed and adaptive - optimal filtering, Get Answer, Expert's Help, Fixed and adaptive - optimal filtering Discussions

Write discussion on Fixed and adaptive - optimal filtering
Your posts are moderated
Related Questions

Q. What do you mean by Induction? The essentials for producing an emf bymagneticmeans are electric andmagnetic circuits,mutually interlinked. Figure (a) shows a load (or sink o

Define the term Paging Unit. Paging Unit: The paging mechanism functions along with 4K - byte memory pages or along with a new extension obtainable to the Pentium with 4M byt

Explain the NAND Gates - Microprocessor? The NAND GATE is a AND gate with the output inverted. Consequently the outputs of a NAND gate would be the opposites of the outputs of a A

Why are some flashlights brighter than others? Why is it important that all of the batteries point in the same direction? What is the difference between old batteries and new? What

Q. Grade of Service In loss systems? Grade of Service : In loss systems, traffic carried by the network is normally lower than actual traffic offered to the network by subscri

Obtain expressions for the drain source current in an n-channel MOS transistor in terms of terminal voltages and transistor parameters. Indicate reasons why, for deep sub micron t

Q. (a) Consider the capacitor - input filter circuit of Figure and obtain the z-parameters for the circuit. (b) Determine the transfer function V 2 /V 1 when I 2 is zero.

Q. Some element voltages and currents are given in the network con?guration of Figure. Determine the remaining voltages and currents. Also calculate the power delivered to each ele

what is the disadvantages of superposition theorem?