Finite difference method, Mathematics

2014_finite.png

Two reservoirs of equal cross sectional areas (315 m2) and at equal elevations are connected by a pipe of length 20 m and cross sectional area 3 m2. The reservoir on the left (reservoir 1) is filled with a liquid of mass density 1000 kg/m3. The pressure at the bottom of reservoir 1 (that is, p1) is 39000 N/m2. The second reservoir and the connecting pipe are initially empty. The acceleration due to gravity is 9.8 m/s2.

The following assumptions apply. One can ignore the effects of friction, form losses and the elevation differences along the path of the connecting pipe. The fluid is incompressible and inviscid. Flow through the connecting pipe is started by the instantaneous, full opening of the valve at the bottom of reservoir 1.

Using the finite difference method, write a Fortran program that predicts the behavior of the system for 200 seconds following the opening of the valve. Assume a timestep size of

0.1 sec. The program must read the above data (with the exception of the acceleration due to gravity and problem duration time of 200 seconds) from an input file and generate an output file. Run the following four cases;

a) one for the above data,

b) identical to case (a) but with the cross-sectional area of the second reservoir, A2, modified to 200 m2,

c) identical to case (a) but with the length of the connecting pipe, L, modified to 40 m, and

d) identical to case (a) but with the cross sectional flow area of the connecting pipe, Ap, modified to 6 m2.

The output file must include the following information:

Modeling and Simulation for Mechanical and Nuclear Engineers -

  • the date and time of the run,
  • a summary of the input data values, including units of measurement,
  • the maximum value of the volumetric flow rate, qv, through the connecting pipe(m3/s),
  • the maximum depths of the water in meters in each reservoir during the transient,
  • the maximum pressure at the exit of each reservoir (p1 and p2) during the transient (N/m2), and
  • a table of the volumetric flow rate through the connecting pipe (m3/s), the depth of water in each reservoir in meters, and the pressures p1 and p2 as a function of time.

The deliverables are:

  • the Fortran source code listing,
  • the input and output files for the four cases, and
  • the following plots as a function of time for each case:

the volumetric flow rate through the connecting pipe,

a comparison of the values of p1 and p2, and

a comparison of the fluid depth in each reservoir.

Plots should have appropriately labeled axes. The y-axis parameter value may be normalized if you wish.

In the text of the transmitting email answer the following:

1. explain the differences in the results of the four cases in terms of changes to the system's fluid capacitance Cf and fluid inductance If, and

2. Explain how this system relates to that of the unsteady flow in a U-tube discussed in class. For example, all else being equal, does the period of oscillation of the liquid in this system, like that of the U-tube system, vary as the square root of the length of the connecting pipe? Back up your answer either by reference to the required cases or to additional cases that you run.

Posted Date: 2/18/2013 4:04:14 AM | Location : United States







Related Discussions:- Finite difference method, Assignment Help, Ask Question on Finite difference method, Get Answer, Expert's Help, Finite difference method Discussions

Write discussion on Finite difference method
Your posts are moderated
Related Questions
Q. There are 10 students on the school debating team. How many different ways can the team choose a president and a secretary? Ans. There are 10 choices for the president

Why -2=-x , is x=2

If ABCD isaa square of side 6 cm find area of shaded region

let X be a nonempty set. let x belong to X. show that the collection l={ union subset of X : union = empty or belong U

Example of Probability: Example: By using a die, what is the probability of rolling two 3s in a row? Solution: From the previous example, there is a 1/6 chance of

What is the median for this problem (55+75+85+100+100)

A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approx


no the parallel lines do not meet at infinity because the parallel lines never intersect each other even at infinity.if the intersect then it is called perpendicuar lines

If the diameter of a right cylinder is doubled and the height is tripled, its volume is a. multiplied by 12. b. multiplied by 2. c. multiplied by 6 d. multiplied by 3.