1. Let z is equal to
Let us draw the lines  2x3y = 6, X  2y =2
6x+ 4y = 24
2. using suitable points on the graph.
3. Now shade the region of intersection of the 3 lines.
4. The shaded region ABCD represents the region of feasible region
5. The Vertices of feasible region are
6. Now let us find the maximum and minimum values by using these points
7. For the corner point A(18/7,2/7)
8. For the corner point B(7/2,3/4)
9. For the corner point C(3/2,15/4)
10. For the corner point D(3/13,24/13)
11. We find the maximum value occurs at vertex B, minimum value at vertex D
Maximum value
Minimum value

Z = 5x + 2y
2x + 3y = 6
X  2y =2
6x+ 4y = 24
 3x + 2y = 3
A ( 18\7,2\7) B(7\2,3\4) C(3\2,15\4) D(3\13,24\13)
5(18/7)+2(2/7)= 94/7
5(7/2)+2(3/4)=76/4
5(3/2)+2(15/4)=60/4
5(3/13)+2(24/13)=63/13
19
63\13
