Find the inverse of a given function, Algebra

Given f ( x ) = 3x - 2 find f -1 ( x ).

Solution

Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it would be nice to really start with this as we know what we must get. it will work as a nice verification of the procedure.

We'll first replace f ( x ) with y.

                                           y = 3x - 2

Next, replace all x's with y & all y's with x.

                                            x =3 y - 2

Now, solve out for y.

x + 2 = 3 y

1 /3 (x + 2) = y

x/3 + 2/3=y

At last replace y with f -1 ( x ) .

                                         f -1 ( x )  = x/3 + 2/3

Now, we have to verify the results.  Already we took care of this in the earlier section; though, we actually should follow the procedure so we'll do that here. It doesn't issue which of the two that we verify we just have to check one of them.  This time we'll verify that

( f o f -1 )( x ) = x is true.

 ( f o f -1 )( x ) = f[ f -1 ( x )]

                       = f [x/3 + 2 /3]

                      =   3( x /3 + 2/3 ) - 2

                     = x + 2 - 2

                         =

Posted Date: 4/8/2013 1:27:04 AM | Location : United States







Related Discussions:- Find the inverse of a given function, Assignment Help, Ask Question on Find the inverse of a given function, Get Answer, Expert's Help, Find the inverse of a given function Discussions

Write discussion on Find the inverse of a given function
Your posts are moderated
Related Questions
how to add the positive numbers to negative numbers?and what is the highest +5 or -3

Express commuter train #12 leaves the downtown station and travels at an average speed of miles per hour towards the north-side station, which is miles away. Express commuter train

Working together Jack and Bob can clean a place in 30 minutes. On his own, Jack can clean this place in 50 minutes. How long does it take Bob to clean the same place on his own?

i Need Help on Solve for X




The Exeter Company produces two basic types of dog toys. Two resources are crucial to the output of the toys: assembling hours and packaging hours. Further, only a limited quantity

All parabolas are vaguely "U" shaped & they will contain a highest or lowest point which is called the vertex.  Parabolas might open up or down and may or may not contain x-inte