Find the internal energy and entropy , Chemical Engineering

1 ΔS on rapid decompression

Steam at 400C, 100 bar in an insulated cylinder is suddenly decompressed to 10 bar, by unlocking the piston and allowing the gas to expand, with a constant external pressure of 10 bar applied to the piston. Find the final temperature T2, and the entropy change ΔS.

To answer the problem, ask yourself the following questions:

1) How much work is done as the steam expands?

2) What does energy conservation tell you in this situation?

2 Reversible heating with reservoirs

a)  A system with constant heat capacity CP and initial temperature T1 is heated by contacting a reservoir at Tf . Find the entropy change of the system, reservoir, and system plus reservoir. Evaluate the total entropy change assuming Tf = 2T1.

b) The same system is now heated in two stages, by first contacting with a reservoir at T2 halfway between T1 and Tf , then by contacting with the reservoir at Tf . Again find the entropy change of system, reservoirs, and system plus reservoirs, and again evaluate the total entropy change.

c)  The system is now heated in n stages, by contacting with reservoirs at n equally spaced

Ti between T1 and Tf . Write an expression for the entropy change of the system, reservoirs, and system plus reservoirs. How does this compare to the limit of reversible heating as n becomes large?

3 Carnot cycle in steam

Consider a Carnot heat engine operating with steam as the working uid, between reservoirs at

TL = 200C and TH = 500C.

Do the following, using the steam tables:

1) Sketch the cycle on a PV diagram. Label the state points 1, 2, 3, 4 starting with the low-pressure, low-temperature state.

2)  Let the lowest pressure in the cycle (P1) be 1 bar, and the highest (P3) be 80 bar. Find the values of P2 and P4.

3)  Compute the heat Q and work W on each leg of the cycle; tabulate your results (SI units).

4)  Compute the efficiency of this cycle as a heat engine. Compare to the ideal-gas result for the Carnot efficiency, and briey comment on the comparison.

4 van der Waals U, S

For a substance described by the van der Waals equation of state with a constant heat capacity CV :

1) Find the internal energy U(T; V ), relative to a reference state at some T0; V0.

2) Find the entropy S(T; V ), likewise.

Posted Date: 2/20/2013 5:20:18 AM | Location : United States







Related Discussions:- Find the internal energy and entropy , Assignment Help, Ask Question on Find the internal energy and entropy , Get Answer, Expert's Help, Find the internal energy and entropy Discussions

Write discussion on Find the internal energy and entropy
Your posts are moderated
Related Questions

how do you write a report about conductometric titration

Which one of the  following  statements  about  product  A is correct? It arose from a reaction between chloride ion and a primary carbocation It arose from a reaction

Describe different type of valves

Q.  What are the functions of a lubricant? Describe the various types of lubrication.                                            OR Discuss the types of mechanism of lub

What is the basis of classification of hot and cold working? Cold and hot working: Changing the shape of material by extrusion, forging, rolling, and drawing include plastic

PROCEDURE : Visit any two labs of your choice (Botany/Zoology/Physics/Chemistry) of your study centre and consult the lab technician or senior laboratory supporting staff and com

Normal 0 false false false EN-IN X-NONE X-NONE

what are pseudo order reaction?with suitable example?