Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Binding constraints for the original linear program model, A toy company pr...

A toy company produces 2 models of water guns: spray king and zapper. They are manufactured in batches for easier packaging and sale. Two of the limiting resources are 1200 pounds

Adding & subtracting i guess, Jack and his mother paid $11.50 for tickets t...

Jack and his mother paid $11.50 for tickets to the movies, and adults tickets cost $4.50 more than a child ticket what was the cost of each ticket?

Decimals, which one of the following examples represents a repeating decima...

which one of the following examples represents a repeating decimal? 0.123123,1.111114,0.777777,4.252525?

.., rectangles 7cm by 4cm

rectangles 7cm by 4cm

Area between two curves, Area between Two Curves We'll start with the ...

Area between Two Curves We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Prime factors, I need help with prime factors.

I need help with prime factors.

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd