Factorization of expressions, Mathematics

Above we have seen that (2x2 - x + 3) and (3x3 + x2 - 2x - 5) are the factors of 6x5 - x4 + 4x3 - 5x2 - x - 15. In this case we are able to find one factor given the other one. How are we going to solve in case when we are not given either of them. Finding the factors of a given expression forms the part of our attention now. First, we look at binomial expressions and once we understand this we move on to trinomials and polynomials. If the given expression is in the form of an identity (we look at them shortly) our job becomes easier otherwise we have to adopt trial and error method until we get at least one of the factors. Once we know one of the factors then by employing the division method we can get other factors.

Example 

Factorize x2 + 6x + 9.

If we substitute x = 1, the value of the expression will be (1)2 + 6(1) + 9 = 16

Since the value of the numerical expression is not 0, we substitute another value. We will continue to do so until we get a zero. 

If we substitute x = -1, the value of the expression will be (-1)2 + 6(-1) + 9 = 4

If we substitute x = 2, the value of the expression will be (2)2 + 6(2) + 9 = 25

If we substitute x = -2, the value of the expression will be (-2)2 + 6(-2) + 9 = 1

If we substitute x = 3, the value of the expression will be (3)2 + 6(3) + 9 = 36

We substitute x = -3, the value of the expression  will be (-3)2 + 6(-3) + 9 = 0

For x = -3, the value of the expression is 0. That is, x + 3 is one of the factors of the expression x2 + 6x + 9. To obtain the other factor we divide the expression by the factor we obtained. That will be

x + 3 )

x2 + 6x + 9

( x + 3

(-)

x2 + 3x

 


 

    3x + 9

 

 

 

(-)   3x + 9

 


 

 

            0

 

From the division, we observe that x + 3 is the other factor. When this is equated to zero we obtain x = - 3. Therefore, the factors of x2 + 6x + 9 are (x + 3)(x + 3) or (x + 3)2.

In the above example we note that x2 + 6x + 9 = (x + 3)2.  Isn't this identical to a2  + 2ab + b2 = (a + b)2? The value of 'a' being x and that of 'b' equal to 3. This is one of the basic identities we get to see in algebra. 

Posted Date: 9/13/2012 3:16:53 AM | Location : United States







Related Discussions:- Factorization of expressions, Assignment Help, Ask Question on Factorization of expressions, Get Answer, Expert's Help, Factorization of expressions Discussions

Write discussion on Factorization of expressions
Your posts are moderated
Related Questions
Give the example of Exponents? When a number is multiplied several times, it is easier to write it as an exponent. For example, four multiplied to itself three times, is writte


A national park remains track of how many people per car enter the park. Today, 57 cars had 4 people, 61 cars had 2 people, 9 cars had 1 person, and 5 cars had 5 people. What is th

how do you multiply fractions

4n to the power 3/2 = 8 to the power minus 1/3. find the value of n.

Round 14.851 to the nearest tenth? The tenths place is the ?rst number to the right of the decimal. Here the number 8 is in the tenths place. To decide whether to round up or

sin3θ = cos2θ find the most general values of θ satisfying the equatios? sinax + cosbx = 0 solve ? Solution)  sin (3x) = sin(2x + x) = sin(2x)cos(x) + cos(2x)sin(x) = 2sin(x)cos(

12. List the merits and limitations of using North West corner rule.

you are in charge of making punch for an upcoming dance. the punch recipe makes 5 cups of punch by making 3 cups of cranberry juice with 2 cups of apple juice. What is the ratio of

why modi method is used in operation research