Expression trees, Data Structure & Algorithms

Assignment Help:

What are the expression trees? Represent the below written expression using a tree.

Give a relevant comment on the result that you get when this tree is traversed in Preorder, Inorder and postorder. (a-b) / ((c*d)+e)

The leaves of an expression tree are operands, for instance constants or variable names, and the other nodes include operators. This particular tree happens to be a binary tree, because all of the operations are binary, and although this is the easiest case, it is probable for nodes to have more than two children. It can also be possible for a node to have only one child, as is the case with the unary minus operator. We can evaluate the expression tree, T, by applying the operator at the root of it  to the values obtained by recursively evaluating the left and right subtrees.

The expression tree obtained for the expression: (a - b ) / ( ( c * d ) + e))

1269_expression_tree.png

The traversal of the above drawn expression tree gives the following result:-

Preorder:- ( / - a b + * c d e)

This expression is the same as the "prefix notation" of the original expression.

Inorder:- ( a - b) / ((c * d) + e )

Thus the inorder traversal gives us the actual expression.

Postorder:- ( a b - c d * e + / )

Thus the postorder traversal of this gives us the "posfix notation" or we can say the "Reverse Polish notation" of the original expression.


Related Discussions:- Expression trees

Write an algorithm for binary search, Q.1 Write procedures/ Algorithm to in...

Q.1 Write procedures/ Algorithm to insert and delete an element in to array. Q.2. Write an algorithm for binary search. What are the conditions under which sequential search of

Program for all pairs shortest paths algorithm, Program segment for All pai...

Program segment for All pairs shortest paths algorithm AllPairsShortestPaths(int N, Matrix C, Matrix P, Matrix D) { int i, j, k if i = j then C[i][j] = 0  for ( i =

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Multiplication, Implement multiple stacks in a single dimensional array. Wr...

Implement multiple stacks in a single dimensional array. Write algorithms for various stack operations for them.

Travelling salesman problem, Example 3: Travelling Salesman problem G...

Example 3: Travelling Salesman problem Given: n associated cities and distances among them Find: tour of minimum length that visits all of city. Solutions: How several

Illumination of wire frame, Illumination of wire frame The colour or sh...

Illumination of wire frame The colour or shade that a surface appears to the human eye depends primarily on three  factors : Colour and strength of incoming illumination

Define the term ''complexity of an algorithm, Define the term 'complexity o...

Define the term 'complexity of an algorithm; Complexity of an algorithm is the calculate of analysis of algorithm. Analyzing an algorithm means predicting the resources that th

Algorithm to add element in the end of circular linked list, Q. Write down ...

Q. Write down an algorithm to add an element in the end of the circular linked list.        A n s . Algo rithm to Add the Element at the End of Circular Linked Lists

What is a container taxonomy, What is A Container Taxonomy It's useful ...

What is A Container Taxonomy It's useful to place containers in a taxonomy to help understand their relationships to one another and as a basis for implementation using a class

Time required to delete a node x from a doubly linked list, The time needed...

The time needed to delete a node x from a doubly linked list having n nodes is O (1)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd