Exponential functions, Algebra

Definition of an exponential function

If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

                                                     f( x ) = b x

Where b is the base and x is any real number.

Notice that now the x is in the exponent & the base is a fixed number.  It is exactly the opposite through what we've illustrated to this point. To this point the base has been the variable, x in most of the cases, and the exponent was a fixed number.  Though, in spite of these differences these functions evaluate in precisely the similar way as those that we are utilized to. 

Before we get too far into this section we have to address the limitation on b. We ignore one and zero since in this case the function would be,

                             f( x ) = 0x  = 0        and f( x) = 1x  = 1

and these are constant functions & won't have several same properties that general exponential functions have.

Next, we ignore negative numbers so that we don't get any complex values out of the function evaluation.  For example if we allowed b = -4 the function would be,

                                   f(x)=(-4)x            ⇒ f (1/2)=(-4)(1/2)=√(-4)    

and as you can illustrates there are some function evaluations which will give complex numbers. We only desire real numbers to arise from function evaluation & so to ensure of this we need that b not be a negative number.

Now, let's take some graphs.  We will be capable to get most of the properties of exponential functions from these graphs.

Posted Date: 4/8/2013 3:10:01 AM | Location : United States







Related Discussions:- Exponential functions, Assignment Help, Ask Question on Exponential functions, Get Answer, Expert's Help, Exponential functions Discussions

Write discussion on Exponential functions
Your posts are moderated
Related Questions


Determine a list of all possible rational zeroes Let's see how to come up along a list of possible rational zeroes for a polynomial. Example    Find a list of all possible

the kinetic energy of an object varies directly as the square of its velocity. A certain object traveling at 80 feet per second has a kinetic enrgy of 240 foot-pounds. what would b

If P (x) is a polynomial of degree n then P (x) will have accurately n zeroes, some of which might repeat. This fact says that if you list out all the zeroes & listing each one

Tickets for the school play cost $6 for students and $9 for adults. On opening night, all 360 seats were filled, and the box office revenues were $2610. How many student and how



Using synthetic division do following  divisions. Divide 2x 3 - 3x - 5  by x + 2 Solution Okay in this case we have to be a little careful here. We have to divide by a