## Explain the scan-line algorithm, Data Structure & Algorithms

Assignment Help:

Explain the Scan-Line Algorithm

This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of filling just one surface, we now deal with multiple surfaces. As each scan line is processed, all polygon surfaces intersecting that line are examined to determine which are visible. Across each scan line, depth calculations are made for each overlapping surface to determine which is nearest to the view plane. When the visible surface has been determined, the intensity value for that position is entered into the refresh buffer.

We assume that tables are set up for the various surfaces, which include both an edge table and a polygon table. The edge table contains coordinate end points for each line in the scene, the inverse slope of each line, and pointers into the polygon table to identify the surfaces bounded by each line. The polygon table contains coefficients of the plane equation for each surface, intensity information for the surfaces, and possibly pointers into the edge table. To facilitate the search for surfaces crossing a given scan line, we can set up an active list of edges from information in the edge table. This active list will contain only edges that cross the current scan line, sorted in order of increasing x. In addition, we define a flag for each surface that is set on or off to indicate whether a position along a scan line is inside or outside of the surface. Scan lines are processed from left to right. At the leftmost boundary of a surface, the surface flag is turned on; and at the rightmost boundary, it is turned off.  Figure 3.6 illustrates the scan-line method for locating visible portions of surface for pixel positions along the line. The active list for scan line 1 contains information from the edge table for edges AB and BC, only the flag for surface S1 is on. Therefore, no depth calculations are necessary, and intensity information for surface S1 is entered from the polygon table into the refresh buffer. Similarly, between edges EH and FG, only the flag for surface S2 is on. No other positions along scan line 1 intersect surfaces, so the intensity values in the other areas are set to the background intensity. The background \intensity can be loaded throughout the buffer in an initialization routine.

For scan lines 2 and 3 in Figure, the active edge list contains edges AD, EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for surface S1 is on. But between edges EH and BC, the flags for both surfaces are on. In this interval, depth calculations must be made using the plane coefficients for the two surfaces. For this example, the depth of surface S1 is assumed to be less than that of S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2 are stored until edge FG is passed.

We can take advantage of coherence along the scan lines as we pass from one scan line to the next. In Figure 3.6, scan line 3 has the same active list of edges as scan line 2. Since no changes have occurred in line intersections, it is unnecessary again to make depth calculations between edges EH and BC. The two surfaces must be in the same orientation as determined on scan line 2, so the intensities for surface S1 can be entered without further calculations. #### Which sorting methods sorting a list which is almost sorted, Which sorting ...

Which sorting methods would be most suitable for sorting a list which is almost sorted  Bubble Sorting method.

#### Graph, multilist representation of graph

multilist representation of graph

#### Deletion of a node from an avl tree, For AVL trees the deletion algorithm i...

For AVL trees the deletion algorithm is a little more complicated as there are various extra steps involved in the deletion of node. If the node is not a leaf node, then it contain

#### Write functions for both addition and subtraction, You will write functions...

You will write functions for both addition and subtraction of two numbers encoded in your data structure. These functions should not be hard to write. Remember how you add and subt

#### Interest, I =PR/12 Numbers of years .Interest rate up to 1yrs ...

I =PR/12 Numbers of years .Interest rate up to 1yrs . 5.50 up to 5yrs . 6.50 More than 5 yrs . 6.75 design an algorithm based on the above information

#### Enumerate about the data structure, Enumerate about the Data structure ...

Enumerate about the Data structure An arrangement of data in memory locations to signify values of the carrier set of an abstract data type. Realizing computational mechanis

#### Avl tree, Example: (Single rotation into AVL tree, while a new node is inse...

Example: (Single rotation into AVL tree, while a new node is inserted into the AVL tree (LL Rotation)) Figure: LL Rotation The rectangles marked A, B & C are trees

#### State the ways to construct container taxonomy, State the ways to construct...

State the ways to construct container taxonomy There are several ways that we could construct our container taxonomy from here; one way that works well is to make a fundamental

#### Algorithm for the selection sort, Q. Give the algorithm for the selection s...

Q. Give the algorithm for the selection sort. Describe the behaviours of selection sort when the input given is already sorted.

#### What is binary search, What is binary search?   Binary search is most ...

What is binary search?   Binary search is most useful when list is sorted. In binary search, element present in middle of the list is determined. If key (the number to search)  