Explain the scan-line algorithm, Data Structure & Algorithms

Assignment Help:

Explain the Scan-Line Algorithm

This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of filling just one surface, we now deal with multiple surfaces. As each scan line is processed, all polygon surfaces intersecting that line are examined to determine which are visible. Across each scan line, depth calculations are made for each overlapping surface to determine which is nearest to the view plane. When the visible surface has been determined, the intensity value for that position is entered into the refresh buffer.

We assume that tables are set up for the various surfaces, which include both an edge table and a polygon table. The edge table contains coordinate end points for each line in the scene, the inverse slope of each line, and pointers into the polygon table to identify the surfaces bounded by each line. The polygon table contains coefficients of the plane equation for each surface, intensity information for the surfaces, and possibly pointers into the edge table. To facilitate the search for surfaces crossing a given scan line, we can set up an active list of edges from information in the edge table. This active list will contain only edges that cross the current scan line, sorted in order of increasing x. In addition, we define a flag for each surface that is set on or off to indicate whether a position along a scan line is inside or outside of the surface. Scan lines are processed from left to right. At the leftmost boundary of a surface, the surface flag is turned on; and at the rightmost boundary, it is turned off.  Figure 3.6 illustrates the scan-line method for locating visible portions of surface for pixel positions along the line. The active list for scan line 1 contains information from the edge table for edges AB and BC, only the flag for surface S1 is on. Therefore, no depth calculations are necessary, and intensity information for surface S1 is entered from the polygon table into the refresh buffer. Similarly, between edges EH and FG, only the flag for surface S2 is on. No other positions along scan line 1 intersect surfaces, so the intensity values in the other areas are set to the background intensity. The background \intensity can be loaded throughout the buffer in an initialization routine. 

For scan lines 2 and 3 in Figure, the active edge list contains edges AD, EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for surface S1 is on. But between edges EH and BC, the flags for both surfaces are on. In this interval, depth calculations must be made using the plane coefficients for the two surfaces. For this example, the depth of surface S1 is assumed to be less than that of S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2 are stored until edge FG is passed. 

We can take advantage of coherence along the scan lines as we pass from one scan line to the next. In Figure 3.6, scan line 3 has the same active list of edges as scan line 2. Since no changes have occurred in line intersections, it is unnecessary again to make depth calculations between edges EH and BC. The two surfaces must be in the same orientation as determined on scan line 2, so the intensities for surface S1 can be entered without further calculations.

 

688_data structure.png


Related Discussions:- Explain the scan-line algorithm

Write an algorithm inputs speed of cars using pseudocode, Write an algorith...

Write an algorithm by using pseudocode which: Inputs top speeds of 5000 cars Outputs fastest speed and the slowest speed Outputs average speed of all the 5000 cars

Explain about hidden-surface, Explain about Hidden-surface Hidden-line...

Explain about Hidden-surface Hidden-line removal refers to wire-frame diagrams without surface rendering and polygonal surfaces with straight edges. Hidden-surface removal ref

What do you understand by tree traversal, What do you understand by tree tr...

What do you understand by tree traversal? The algorithm walks by the tree data structure and performs some computation at everynode in the tree. This process of walking by the

Operations on sequential files, Insertion: Records has to be inserted at t...

Insertion: Records has to be inserted at the place dictated by the sequence of keys. As is obvious, direct insertions into the main data file would lead to frequent rebuilding of

Explain almost complete binary tree, Almost Complete Binary Tree :-A binary...

Almost Complete Binary Tree :-A binary tree of depth d is an almost whole binary tree if: 1.Any node and at level less than d-1 has two children. 2. for any node and in the tree wi

Explain the sum of subset problem, a. Explain the sum of subset problem. Ap...

a. Explain the sum of subset problem. Apply backtracking to solve the following instance of sum of subset problem: w= (3, 4, 5, 6} and d = 13. Briefly define the method using a sta

Algorithm for the selection sort, Q. Give the algorithm for the selection s...

Q. Give the algorithm for the selection sort. Describe the behaviours of selection sort when the input given is already sorted.

Assignment, How do I submit a three page assignment

How do I submit a three page assignment

Design a doubly linked list, Instructions : You have to design a dou...

Instructions : You have to design a doubly linked list container. The necessary classes and their declarations are given below The main() function for testing the yo

Write an algorithm to input number of passengers travelling, There are ten ...

There are ten stations on a railway line: Train travels in both directions (i.e. from 1 to 10 and then from 10 to 1).  Fare between each station is $2. A passenger input

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd