Explain ridge regression, Applied Statistics

Using log(x1), log(x2) and log(x3) as the predictors, do pair wise scatterplots of all pairs of variables (including the response) and comment (use the pairs function). Do you think that multi collinearity might be a problem with these data?

Plot the ridge trace for a grid of 50 values for the shrinkage parameter  over the range [0; 1]. Based on this plot suggest a reasonable value for . Find the estimates of the coecients for a ridge re gression with your chosen value of  (using centred and scaled predictors).

(The following question is based on Exercise 8.5 of Myers (1990), Classical and Modern Regression with Applications (Second Edition)," Duxbury).

With centred and scaled predictor variables, the ridge regression estimator for the coecients of the predictors is where y is the vector of responses, X is the design matrix for the centred and scaled predictors, is

1709_basic linear models.png

the shirnkage parameter and I denotes the identity matrix. We write n for the number of observations and k for the number of predictors. Writing biR for the ith component of bR, we will prove in this question that where 2 is the variance of the responses, and vi, i = 1,.......k are the eigenvalues of XTX. The di erent parts of the question below lead you through the proof.

735_basic linear models1.png

(a) Write XTX = QDQT for the eigenvalue decomposition of XTX, where D = diag(v1,........vk) is the diagonal matrix of eigenvalues and Q is an orthogonal matrix (QTQ = I) where the columns are the eigenvectors of XTX. Show that XTX +I = Q(D+I)QT .

2344_basic linear models2.png

where V ar(bR) denotes the covariance matrix of bR. (Hint: recall the result from basic linear models that if Y is a k  1 random vector with V ar(Y ) = V and if A is a k  k matrix and Z = AY then V ar(Z) = AV AT ).

Posted Date: 2/28/2013 12:46:51 AM | Location : United States

Related Discussions:- Explain ridge regression, Assignment Help, Ask Question on Explain ridge regression, Get Answer, Expert's Help, Explain ridge regression Discussions

Write discussion on Explain ridge regression
Your posts are moderated
Related Questions
introduction of median

use of quantitative techniques in public sector

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

Having 11 numbered balls -0 to 10 -into a basket and have 6 spaces to be numbered with the balls selected in each 6 chances and it returned it back to the basket each time. Chanc

Cluster Sampling Here the population is divided into clusters or groups and then Random Sampling is done for each cluster. Cluster Sampling differs from Stratified Sampl

There are situations where none of the three averages is fully satisfactory. For example, if the number of items in a series is very small, none of these av

Advantages It is especially useful in case of open-end classes since only the position and not the values of items must be known. The median is also recommended if th

Scenario : Mrs dick's year 1s and 2s carried out a level-one science investigation to explain the changes in a particular plant over a period of time.  As part of the investigation

Importance and Application of probability: Importance of probability theory  is in all those areas where event are not  certain to take place as same  as starting with games of