Expected-utility maximizer, Advanced Statistics

There are two periods. You observe that Jack consumes 100 apples in period t = 0, and 120 apples in period t = 1. That is,

(c0; c1) = (100; 120)

Suppose Jack has the utility function:

U(c0; c1) = u(c0) + u (c1)

where the felicity function u has the power form. Notice that Jack does not discount the future.

Savings carry 1 percent interest.

(i) Assume that Jack did not face any borrowing constraints when making his choice. What is the that is consistent with Jack's chosen consumption pro le?

(ii) Assume now that Jack could not borrow as much as he wanted when he chose the above consumption allocation. Draw a graph that depicts this scenario. Derive a lower bound for Jack's .

(iii) Relate your answers to the risk-free rate puzzle.

Problem:

Consider the following utility function for money:

1241_utility function1.png

Consider the Samuelson gamble in which with equal probability you win $200 or lose $100.

(i) Show that an expected-utility maximizer with the above utility function u(x) will turn down a single play of the gamble, but will accept three such gambles.

(ii) if you are ambitious..., is any n-fold repetition accepted, where n  3?

(iii) How does this problem relate to Samuelson's claim that accepting a large number of IID gambles while rejecting a single one is a 'fallacy of large numbers'?

Problem

Benartzi and Thaler recount the following experience. When consulting a large investment company, they confronted each fund manager with a simple gamble. The majority of the fund managers rejected the gamble. The CEO of the company noted that he would prefer if all the managers had accepted their gamble. How does this anecdote relate to Samuelson's IID paradox and his discussion of the fallacy of large numbers?

Problem

An expected-utility maximizer whose utility for money is increasing is indifferent between $40 and the lottery (1=2; 0; 1=2; 100). He is also indi erent between $105 and the lottery (1=2; 0; 1=2; 220). Is the individual risk-averse?

Problem An asset pays $5 in state !1 and $2 in state !2. A 'maxmin' investor believes that the probability of state !1 lies in the interval [1=3; 2=3].

(i) What is the highest price at which the investor will be willing to buy the asset?

(ii) What is the minimal price at which the investor will be willing to short sell the asset?

(iii) For what range of prices does the investor stay out of the market?

Problem

Jack uses the following utility-function when making consumption-savings decisions under uncertainty:

522_utility function.png

(i) How should the parameter  be interpreted?

(ii) How should the parameter be interpreted?

(iii) Suppose we use the above utility speci cation to address the equity premium puzzle. What values for α, p do you expect to fi nd?

Posted Date: 2/19/2013 12:26:58 AM | Location : United States







Related Discussions:- Expected-utility maximizer, Assignment Help, Ask Question on Expected-utility maximizer, Get Answer, Expert's Help, Expected-utility maximizer Discussions

Write discussion on Expected-utility maximizer
Your posts are moderated
Related Questions
Non-response is the term generally used for the failure to give the relevant information being collected in the survey. Poor response can be because of the variety of causes, for

Continuous variable : The measurement which is not restricted to the particular values except in so far as this is constrained by the accuracy of measuring instrument. General exam

Mauchly test is a test which a variance-covariance matrix of pair wise differences of responses in the set of longitudinal data is the scalar multiple of identity matrix, a proper

Captures recapture sampling : Another approach to a census for estimating the size of population, which operates by sampling the population number of times, identifying the individ

This is given by common network e.g. Phone Company. The public networks are those networks, which are given by common carriers. It can be a telephone company or an other organizati

Lorenz curve : Essentially the graphical representation of cumulative distribution of the variable, most often used for the income. If the risks of disease are not monotonically in

Multiple comparison tests : Procedures for detailed examination of the differences between a set of means, generally after a general hypothesis that they are all equal has been rej


The method of summarizing the large amounts of data by forming the frequency distributions, scatter diagrams, histograms, etc., and calculating statistics like means variances and

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual