Example which cause problems for hidden-surface algorithms, Data Structure & Algorithms

Assignment Help:

Example which cause problems for some hidden-surface algorithms

Some special cases, which cause problems for some hidden-surface algorithms, are penetrating faces and cyclic overlap. A penetrating face occurs when polygon A passes through polygon B. Cyclic overlap occurs when polygon A is in front of polygon B, which is in front of polygon C, which is in front of Polygon A. Actually, we need only two polygons for cyclic overlap; imagine a rectangle threaded through a polygon shaped like the letter C so that it is behind the top of the C but in front of the bottom part. For the various hidden-surface methods we have presented, discuss whether or not they can handle penetrating faces and cyclic overlap.

(b)  (i) Show that no polygon subdivision takes place in applying the binary space partition method to a convex object.

(ii)  For the case of convex object compare the cost of the back-face removal method with that of the binary space partition method for a single view.

(iii)  Suppose we wish to display a sequence of views of a convex object. How would the cost of using back-face removal compare to the binary space partition scheme?

(c)  Modify the back-face algorithm for unifilled polygons so that instead of removing back faces it draws them in a less pronounced line style (e.g., as dashed lines).

(d)  Test the painter's algorithm by showing several filled polygons with different interior styles and different states of overlap, entered in mixed order.

(e)  Test the painter's algorithm by showing two houses composed of filled polygons with different interior styles. Select a view such that one house partially obscures the other house.

(f) Sketch the minimax boxes for the tangent polygons shown in figure. What conclusions can you make?

 

642_data structure.png


Related Discussions:- Example which cause problems for hidden-surface algorithms

Explain class p problems, Explain class P problems Class  P  is  a  cla...

Explain class P problems Class  P  is  a  class  of  decision  problems  that  can  be  solved  in  polynomial time  by(deterministic) algorithms. This class of problems is kno

Er diagram, Ask queConsider the following functional dependencies: Applican...

Ask queConsider the following functional dependencies: Applicant_ID -> Applicant_Name Applicant_ID -> Applicant_Address Position_ID -> Positoin_Title Position_ID -> Date_Position_O

Array implementation of a dequeue, If a Dequeue is implemented via arrays, ...

If a Dequeue is implemented via arrays, then this will suffer with the similar problems which a linear queue had suffered. Program 8 gives the array implementation of Dequeue.

Link list, algorithm for multiplication of two sparse matrices using link l...

algorithm for multiplication of two sparse matrices using link list

An algorithm to insert a node in beginning of linked list, Q. Write down an...

Q. Write down an algorithm to insert a node in the beginning of the linked list.                         Ans: /* structure containing a link part and link part

A binary tree of depth "d" is an almost complete binary tree, A binary tree...

A binary tree of depth "d" is an almost complete binary tree if  A) Every leaf in the tree is either at level "d" or at level "d-1"  B)  For any node "n" in the tree with a

Addressing modes, Compare zero-address, one-address, two-address, and three...

Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd