Example which cause problems for hidden-surface algorithms, Data Structure & Algorithms

Assignment Help:

Example which cause problems for some hidden-surface algorithms

Some special cases, which cause problems for some hidden-surface algorithms, are penetrating faces and cyclic overlap. A penetrating face occurs when polygon A passes through polygon B. Cyclic overlap occurs when polygon A is in front of polygon B, which is in front of polygon C, which is in front of Polygon A. Actually, we need only two polygons for cyclic overlap; imagine a rectangle threaded through a polygon shaped like the letter C so that it is behind the top of the C but in front of the bottom part. For the various hidden-surface methods we have presented, discuss whether or not they can handle penetrating faces and cyclic overlap.

(b)  (i) Show that no polygon subdivision takes place in applying the binary space partition method to a convex object.

(ii)  For the case of convex object compare the cost of the back-face removal method with that of the binary space partition method for a single view.

(iii)  Suppose we wish to display a sequence of views of a convex object. How would the cost of using back-face removal compare to the binary space partition scheme?

(c)  Modify the back-face algorithm for unifilled polygons so that instead of removing back faces it draws them in a less pronounced line style (e.g., as dashed lines).

(d)  Test the painter's algorithm by showing several filled polygons with different interior styles and different states of overlap, entered in mixed order.

(e)  Test the painter's algorithm by showing two houses composed of filled polygons with different interior styles. Select a view such that one house partially obscures the other house.

(f) Sketch the minimax boxes for the tangent polygons shown in figure. What conclusions can you make?

 

642_data structure.png


Related Discussions:- Example which cause problems for hidden-surface algorithms

Flowchart, create a flowchart that displays the students average score for ...

create a flowchart that displays the students average score for these quizzes

Structures for complete undirected graphs, Q. Draw  the structures of compl...

Q. Draw  the structures of complete  undirected  graphs  on  one,  two,  three,  four  and  five vertices also prove that the number of edges in an n vertex complete graph is n(n-1

Complete trees, This is a k-ary position tree wherein all levels are filled...

This is a k-ary position tree wherein all levels are filled from left to right. There are a number of specialized trees. They are binary trees, AVL-trees, binary search trees, 2

Proof, prove that n/100=omega(n)

prove that n/100=omega(n)

Define merge sort, Define Merge Sort  Merge sort is a perfect example ...

Define Merge Sort  Merge sort is a perfect example of a successful application of the divide and conquer method. It sorts a given array A[0...n-l] by separating it into two ha

State the term access restrictions - container, What is Access Restriction...

What is Access Restrictions Structured containers with access restrictions only allow clients to add, remove and examine elements at certain locations in their structure. For

Queue, what''s queue ?

what''s queue ?

Develop a material requirements plan, The below figure illustrates the BOM ...

The below figure illustrates the BOM (Bill of Materials) for product A. The MPS (Material requirements Planning) start row in the master production schedule for product A calls for

Graph, Multilist Representation of graph

Multilist Representation of graph

How do you rotate a binary tree, How do you rotate a Binary Tree?  Rot...

How do you rotate a Binary Tree?  Rotations in the tree: If after inserting a node in a Binary search tree, the balancing factor (height of left subtree - height of right

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd