Example of one-to-one correspondence, Mathematics

Assignment Help:

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pebbles thrice and came up with a different answer each time. What was happening was that he either left out a pebble while counting, or counted a pebble twice. His counting was something like the following one two three four five, six seven eight.

 

Why do you think Jaswant counted in this yay ?

 

Children like Jaswant have not grasped the idea that each object has to be touched only once during counting, that no object can be left untouched and that only one number name has to be recited upon touching each pebble. In other words, they have yet to understand the concept of one-to-one correspondence. To help them grasp this concept, you need to give them several experiences in setting up objects in one-to-one correspondence. This should be done before you expect them to learn counting, and while teaching them how to count.

 

As part of understanding one-to-one correspondence, children need to understand the meaning of 'many and few', 'more than', 'less than' and 'as many as'. Many everyday experiences help children understand these concepts -when they check whether there are as many plates as the number of people to be fed, when they divide up sweets equally among their friends, and so on.

 

We need to extend these experiences. Let us look at some activities for this purpose.

 

1 Lay out a row of pebbles and ask the child to make another row of as many sticks as the first one.

 

Ask the child to lay out as many leaves (or beads) as the number of' children in the group.

 

2 You can draw a set of rabbits and one of carrots. Then you could ask the child to connect each carrot with a rabbit by a line.

 

Such activities will help the child to visually understand what is involved in one-to-one correspondence.

 

Whatever the activity, we must encourage the children to talk about what they are doing. Ask children questions like "Are there as many leaves as the number of children?" or "Which are more-the leaves or the beads?" during the activities. This helps to strengthen their understanding.


Related Discussions:- Example of one-to-one correspondence

Introduction to addition and subtraction, INTRODUCTION :  When a child of ...

INTRODUCTION :  When a child of seven isn't able to solve the sum 23+9, what could the reasons be? When she is asked to subtract 9 from 16, why does she write 9 - 16 = 13 ?

Unitary method, what is history of Unitary method

what is history of Unitary method

What is the probability that the card is a queen, Five cards - the ten, jac...

Five cards - the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random. (i)  What is the probability that the card is

Equivelent ratios, if 2 ballons cost 12 coins,use equivelent ratios to see ...

if 2 ballons cost 12 coins,use equivelent ratios to see how many coins 8 ballons would cost

Example for pre-operational stage learning maths, E1) I have a three-year-o...

E1) I have a three-year-old friend. He has a lot of toy cars to play with. Playing with him once, I divided the cars into two sets. One set was more spread out and had 14 cars in i

Mathematical concepts and ideas , These experiences should be related to th...

These experiences should be related to the mathematical concepts and ideas that we teach them. Only then will these ideas appear relevant to the children, and be absorbed by them

Some simple equation, divide 50 into two parts such that if 6 is subtracted...

divide 50 into two parts such that if 6 is subtracted from one part and 12 is added to the second part,we get the same number?

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Definition of concavity, Definition 1: Given the function f (x ) then 1...

Definition 1: Given the function f (x ) then 1. f ( x ) is concave up in an interval I if all tangents to the curve on I are below the graph of f ( x ) . 2. f ( x ) is conca

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd