Example of logarithms, Algebra

Example  Evaluate each of the following logarithms.

(a) log1000

 (b) log 1/100

 (c) ln1/e

 (d) ln √e

(e) log34 34

(f) log8 1

Solution

In order to do the first four evaluations we only have to remember what the notation for these are & what base is implied by the notation. The last two evaluations are to show some properties of all logarithms which we'll be looking at eventually.

 (a) log1000 = 3 since 103  = 1000 .

 (b) log  1/100 = -2 since 10-2  =  1/102  =  1/100

 (c) ln 1/e = -1 since e-1 = 1 .

 (d) ln √e = 1 /2 since e 1/2  = √e .

 Notice that along with this one we are actually just acknowledging variation of notation from fractional exponent in radical form.

 (e) log34  34 = 1 since 341 = 34 .Notice that this one will work regardless of the base that we're using.

 (f) log8 1 =0 since 80 =1 Again, note that the base which we're using here won't alter the answer.

Thus, while evaluating logarithms all that we're actually asking is what exponent did we put onto the base to obtain the number in the logarithm.

Now, before we get into some of the properties of logarithms let's first do a couple of quick graphs.

Posted Date: 4/8/2013 3:18:12 AM | Location : United States






Your posts are moderated
Related Questions
how do you round


??2+??2+16??-18??+145=25 Standard form (x-h)^2 +(y-k)^2 k (x^2+16x+64)^2+(y^2-18y+81)^2=25 (x+8)^2+(y-9)^2=120 (h,k)=(8,-9) R=5 Intercepts

find the average rate of change of the function f(x)=4x from X1=0 to x2=6

Example: We are investing $100,000 in an account that earns interest at a rate of 7.5% for 54 months.  Find out how much money will be in the account if, (a) Interest is comp

if a-b equals 73 what is a


Do you accept screen shot because it is a graph.


Augmented Matrix Previously we saw that there were some special cases in the solution to systems of two equations. We illustrated that there didn't need to be a solution at al