Example of logarithms, Algebra

Example  Evaluate each of the following logarithms.

(a) log1000

 (b) log 1/100

 (c) ln1/e

 (d) ln √e

(e) log34 34

(f) log8 1


In order to do the first four evaluations we only have to remember what the notation for these are & what base is implied by the notation. The last two evaluations are to show some properties of all logarithms which we'll be looking at eventually.

 (a) log1000 = 3 since 103  = 1000 .

 (b) log  1/100 = -2 since 10-2  =  1/102  =  1/100

 (c) ln 1/e = -1 since e-1 = 1 .

 (d) ln √e = 1 /2 since e 1/2  = √e .

 Notice that along with this one we are actually just acknowledging variation of notation from fractional exponent in radical form.

 (e) log34  34 = 1 since 341 = 34 .Notice that this one will work regardless of the base that we're using.

 (f) log8 1 =0 since 80 =1 Again, note that the base which we're using here won't alter the answer.

Thus, while evaluating logarithms all that we're actually asking is what exponent did we put onto the base to obtain the number in the logarithm.

Now, before we get into some of the properties of logarithms let's first do a couple of quick graphs.

Posted Date: 4/8/2013 3:18:12 AM | Location : United States

Related Discussions:- Example of logarithms, Assignment Help, Ask Question on Example of logarithms, Get Answer, Expert's Help, Example of logarithms Discussions

Write discussion on Example of logarithms
Your posts are moderated
Related Questions
Each side of a square is increased 4 inches. When this happens, the area is multiplied by 25. How many inches in the side of the original square?

Find out the partial fraction decomposition of each of the following. 8x 2 -12/( x( x 2 + 2 x - 6) Solution In this case the x which sits in the front is a linear term

Whereas we are on the subject of function evaluation we have to now talk about piecewise functions. Actually we've already seen an instance of a piecewise function even if we didn'

How may courts have 18000-18999 seats ? Use the graph

The last topic that we have to discuss in this section is the change of base formula. Most of the calculators these days are able of evaluating common logarithms & natural logar


find th e parent function g(x) = -(x + 8)2 + 4