Example of logarithms, Algebra

Example  Evaluate each of the following logarithms.

(a) log1000

 (b) log 1/100

 (c) ln1/e

 (d) ln √e

(e) log34 34

(f) log8 1

Solution

In order to do the first four evaluations we only have to remember what the notation for these are & what base is implied by the notation. The last two evaluations are to show some properties of all logarithms which we'll be looking at eventually.

 (a) log1000 = 3 since 103  = 1000 .

 (b) log  1/100 = -2 since 10-2  =  1/102  =  1/100

 (c) ln 1/e = -1 since e-1 = 1 .

 (d) ln √e = 1 /2 since e 1/2  = √e .

 Notice that along with this one we are actually just acknowledging variation of notation from fractional exponent in radical form.

 (e) log34  34 = 1 since 341 = 34 .Notice that this one will work regardless of the base that we're using.

 (f) log8 1 =0 since 80 =1 Again, note that the base which we're using here won't alter the answer.

Thus, while evaluating logarithms all that we're actually asking is what exponent did we put onto the base to obtain the number in the logarithm.

Now, before we get into some of the properties of logarithms let's first do a couple of quick graphs.

Posted Date: 4/8/2013 3:18:12 AM | Location : United States







Related Discussions:- Example of logarithms, Assignment Help, Ask Question on Example of logarithms, Get Answer, Expert's Help, Example of logarithms Discussions

Write discussion on Example of logarithms
Your posts are moderated
Related Questions
how do i find the slope of a parallel line on a graph?

How do i find a equation for a line with slope of -4 and x-intercept of 6?


change this radical to a algebraic expression with fractional exponnents 5 squar root x^3

The population of a city was 141 thousand in 1992. The exponential growth rate was 1.6% per year. Find the exponential growth function in terms of t,where t is the number of years

please help me understand polynomials- i get the small problems but i dont understand larger ones

x^2 + 7x + 12 factor fully

A mountain has an elevation of 19,389 feet in 1918, the glacier on this peak covered 4 acres. By 2003 this glacier had melted to 1 acre. What was the yearlyrate of change and what