Example for comparison test for improper integrals, Mathematics

Assignment Help:

Example for Comparison Test for Improper Integrals

Example:  Find out if the following integral is convergent or divergent.

2 (cos2 x) / x2 (dx)

Solution

Let's just take a second and think about how the Comparison Test works. Determine If this integral is convergent then we'll need to discover a larger function that as well converges on similar interval.

Similarly, if this integral is divergent then we'll require to find out a smaller function that as well diverges.

Thus, it seems such as it would be nice to have some idea as to if the integral converges or diverges ahead of time thus we will know whether we will need to have a look for a larger and convergent function or a smaller and divergent function.

To obtain the guess for this function let's notice that the numerator is good and bounded and just won't get too large.  Hence, it seems likely that the denominator will ascertain the convergence or divergence of this integral as we know that

2 1/x2 (dx)

converges since converge.

p = 2 > 1 by the fact in the preceding section.  Thus now her let's guess that this integral will

Thus we now know that we need to find out a function that is larger than

cos2 x / x2

and as well converges.  Making a fraction larger is actually a quite simple procedure.  We can either create the numerator larger or we can make the denominator smaller.  In this type of case we can't do so much about the denominator.  Though we can make use of the fact that 0 ≤ cos2 x ≤ 1 to make the numerator larger (that is we'll replace the cosine with something we know to be larger that is 1).  So,

Cos2 x / x2 < 1/x2

Here now, as we have already noted

2 1/x (dx)

converges and thus by the Comparison Test we know that

2 cos2 x / x2 (dx)


Related Discussions:- Example for comparison test for improper integrals

Finding absolute extrema of f(x) on [a, Finding Absolute Extrema of f(x) on...

Finding Absolute Extrema of f(x) on [a,b] 0.   Confirm that the function is continuous on the interval [a,b]. 1.  Determine all critical points of f(x) which are in the inte

Time table, tips to memorize my time table

tips to memorize my time table

Use the definition of the right- and left-handed limits, Use the definition...

Use the definition of the limit to prove the given limit. Solution Let ε> 0 is any number then we have to find a number δ > 0 so that the following will be true. |

Show that the function f is one-one but not onto, Consider the function f: ...

Consider the function f: N → N, where N is the set of natural numbers, defined by f(n) = n 2 +n+1. Show that the function f is one-one but not onto. Ans: To prove that f is one

Measures of central tendency, Measures of Central Tendency Measures of...

Measures of Central Tendency Measures of Central Tendency are statistical values which tend to happen at the centre of any well ordered set of data. When these measures happen

If 0.3 is added to 0.2 times the quantity x - 3, If 0.3 is added to 0.2 tim...

If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5. What is the value of x? The statement, "If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5,

Trigonometry, what are reason inside a circle?

what are reason inside a circle?

What is factoring of polynomials, What is Factoring of Polynomials? Fac...

What is Factoring of Polynomials? Factoring means much the same thing for polynomials as it does for integers. When you multiply several polynomials together, The polyn

Optimization, Optimization : In this section we will learn optimization p...

Optimization : In this section we will learn optimization problems.  In optimization problems we will see for the largest value or the smallest value which a function can take.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd