Evaluate the infinite limits of given limits, Mathematics

Assignment Help:

Evaluate following limits.

421_limit63.png

Solution

Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here.

In all three cases notice as well that we can't just plug in x = 0 .  If we did we would get division by zero.  Also remember again that the definitions above can be easily modified to give similar definitions for the two one-sided limits which we'll require here.

Now, there are many ways we could proceed here to obtain values for these limits. One way is to plug in some points & see what value the function is approaching.  In proceeding section we said that we were no longer going to perform this, however in this case it is a good way to demonstrate just what's going on with this function.

1099_limit65.png

Hence, following is a table of values of x's from both the left & the right.  By using these values we'll be capable to estimate the value of the two one-sided limits & once we have that done we can employ the fact that the normal limit will exist only if the two one-sided limits exist and have the similar value.

333_limit66.png

Through this table we can notice that as we make x smaller & smaller the function 1/x gets larger & larger and will reach the similar sign that x originally had.  It has to make sense that this trend will keep on for any smaller value of x that we select to use. The function is a constant (one in this case) divided by an increasingly small number. The resulting fraction has to be an increasingly large number and as illustrious above the fraction will retain the similar sign as x.

We can make the function as large and positive as we desire for all x's adequately close to zero whereas staying positive (i.e. on the right).  Similarly, we can make the function as large and -ve as we desire for all x's sufficiently close to zero whereas staying negative (that means on the left). Thus from our definition above it looks like we ought to have the following values for the two one sided limits.

203_limit67.png

Another way to illustrates the values of the two one sided limits here is to graph the function.  Again, in the earlier section we mentioned that we won't do this too frequently as most functions are not something we can quickly sketch out in addition to the problems with accuracy in reading values off the graph.  In this case though, it's not too difficult to sketch out a graph of the function and, in this case as we'll see correctness is not really going to be an issue.  Hence, here is a quick sketch of the graph.Hence, we can see through this graph that the function does behave much as we specified that it would from our table values. The closer x gets to zero through the right the larger (in the positive sense) the function gets, whereas the closer x gets to zero through the left the larger (in the negative sense) the function gets.

At last, the normal limit, in this case, will not exist as the two one-sided limits have different values.

Hence, in brief here are the values of the three limits for this example.

577_limit68.png


Related Discussions:- Evaluate the infinite limits of given limits

Homework, joey asked 30 randomly selected students if they drank milk, juic...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Unitary methods, john walked to school at an average speed of 3 miles/hr a...

john walked to school at an average speed of 3 miles/hr and jogged back along the same route at 5miles/hr. if his total time was 1 hour, what was the total number of miles in the

Solving an equation using multiplication and division, Solving an equation ...

Solving an equation using Multiplication and Division       A variable is a symbol that represents a number. Usually we use the letters like n , t , or x for variables. For

Coefficient of determination, Coefficient of Determination It refers t...

Coefficient of Determination It refers to the ratio of the explained variation to the total variation and is utilized to measure the strength of the linear relationship. The s

Describe the basic concepts and terminology, Describe the Basic Concepts an...

Describe the Basic Concepts and Terminology? Somebody tells you that x = 5 and y = 3. "What does it all mean?!" you shout. Well here's a picture: This picture is what's

Compute the double integral - triangle with vertices, 1) let R be the trian...

1) let R be the triangle with vertices (0,0), (pi, pi) and (pi, -pi). using the change of variables formula u = x-y and v = x+y , compute the double integral (cos(x-y)sin(x+y) dA a

How far up the building will the ladder reach?, A rescue and ?re squad plac...

A rescue and ?re squad places a 15 ft ladder against a burning building. If the ladder is 9 ft from the base of the building, how far up the building will the ladder reach? a. 8

Find out the domain of function - three dimensional space, Find out the dom...

Find out the domain of each of the following.  (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y  (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know

Two circles touching internally prove that ox:oy=oa:ob, Two circles touchin...

Two circles touching internally at O. OXY, OAB straight lines, the latter passing through the centres. Prove that OX : OY = OA : OB. Given : Two circles touching internally a

Solids, a can of soup is shaped like wich solid

a can of soup is shaped like wich solid

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd