Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Algebra, can I access algebra videos?

can I access algebra videos?

How to divide two fractions, Q. How to divide two fractions?If you want to ...

Q. How to divide two fractions?If you want to divide two fractions, You invert the second fraction (that means, turn it upside-down) and multiply (change the division to a

Construct the adjacency matrix and the adjacency lists, Question: Constrcut...

Question: Constrcut the adjacency matrix and the adjacency lists for the graph G below, where the weights associated with edges represent distances between nodes. If no edge is pre

Determines the possibility, There is a committee to be selected comprising ...

There is a committee to be selected comprising of 5 people from a group of 5 men and 6 women. Whether the selection is randomly done then determines the possibility of having the g

Tutoring , hi, i was wondering how do you provide tutoring for math specifi...

hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg

What is the square root of -i, To find sq root by the simple step... root (...

To find sq root by the simple step... root (-i)=a+ib............... and arg of -i= -pi/2 or 5pi/2

Quotient rule (f/g)'' = (f''g - fg'')/g2, Quotient Rule (f/g)' = (f'g - ...

Quotient Rule (f/g)' = (f'g - fg')/g 2 Here, we can do this by using the definition of the derivative or along with Logarithmic Definition. Proof Here we do the pr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd