Eliminating data hazards - computer architecture, Computer Engineering

Eliminating data hazards:

Forwarding

NOTE: In the following instance, computed values are in bold, whereas Register numbers are not.

Forwarding involves adding output data into a previous stage of the pipeline. For example, let's assume we desire to write the value 3 to register 1, (which already contains a six), and then add 7 to register 1 and hold the result in register 2, for instance

Instruction 0: Register 1 = 6

Instruction 1: Register 1 = 3

Instruction 2: Register 2 = Register 1 + 7 = 10

Following execution, register 2 would contain the value 10. Though, if Instruction 1 (write 3 to register 1) does not fully exit the pipeline before Instruction 2 begins execution, it means that Register 1 does not contain the value 3 when Instruction 2 performs its addition operation. In such type of event, Instruction 2 adds 7 to the old value of register 1 (6), and so register 2 would contain 13 instead for example Instruction 0: Register 1 = 6

Instruction 1: Register 1 = 3

Instruction 2: Register 2 = Register 1 + 7 = 13

This error takes place because before Instruction 1 has committed/stored Instruction 2 reads1 Register the result of its write operation to Register 1. Thus when Instruction 2 is reading the contents of Register 1, register 1 still contains 6, not 3.

Forwarding (described below) helps right such errors by depending on the fact that the output of Instruction 1 (which is 3) may be utilized by subsequent instructions before the value 3 is committed to/stored in Register 1.

Forwarding is implemented by putting back the output of an instruction into the previous stage(s) of the pipeline as soon as the output of that instruction is available.  Forwarding applied to our instance means that we do not wait to commit/store the output of Instruction 1 in Register 1 (in this instance, the output is 3) before making that output accessible to the subsequent instruction (in this particular case, Instruction 2). The effect is that Instruction 2 uses the right (the more recent) value of Register

1: the commit/store was made instantly and not pipelined.

With forwarding enabled, the ID/EX[clarification needed] stage of the pipeline now has 2 inputs: the value read from the register mention (in this instance, the value 6 from Register 1), and the new value of Register 1 (in this instance, this value is 3) which is sent from the next stage (EX/MEM)[clarification needed]. Additional control logic is utilized to determine which input to use.

813_Eliminating data hazards.png

Posted Date: 10/13/2012 4:29:09 AM | Location : United States







Related Discussions:- Eliminating data hazards - computer architecture, Assignment Help, Ask Question on Eliminating data hazards - computer architecture, Get Answer, Expert's Help, Eliminating data hazards - computer architecture Discussions

Write discussion on Eliminating data hazards - computer architecture
Your posts are moderated
Related Questions
what is polymorphism

How to fix an ASIC-based design from easiest to most extreme? There are different ways to fix an ASIC-based design as given below: Initially, assume some reviews fundamentally.

Binary Constraints: Alternatively unary constraints specify that a particular variable can take certain values that basically restricts the domain for that variable thus shoul

How Online Databases Work? An online or web-based database keeps data on a cloud of servers somewhere on the Internet, which is accessible by any authorized user with an Intern

Define the concept of Typing of object oriented analysis Typing enforces object class such that objects of different classes cannot be interchanged.  Or we can say that, class

describe the block diagram of a system showing the following microprocessor memory system buses

What are the standard types of files produced? A PDF file is universally recognized by the internet and is also a secure image, given that an electronic footprint remains when

The number of flip flops contained in IC 7490 is ? Ans. 2 flip flops contained in IC 7490.

Explain the Race Condition The situation where various processes access - and manipulate shared data concurrently. The final value of the shared data relies upon which process

how can we improve the way LLC and MAC are used for LAN operation.?