The Expectation/Conditional Maximization Either algorithm which is the generalization of ECM algorithm attained by replacing some of the CM-steps of ECM which maximize the constrained expected complete-data log-likelihood, with steps that maximize correspondingly constrained real likelihood. The algorithm can have substantially faster convergence rate than either the EM algorithm or ECM measured using either the number of iterations or actual computer time. There are two reasons for this enhancement. First, in some of the ECME's maximization steps the actual likelihood is being conditionally maximized, rather than the current approximation to it as with EM and ECM. Second,
ECME permits faster converging numerical techniques to be used on only those constrained maximizations where they are most efficacious.