Ecme algorithm, Advanced Statistics

Assignment Help:

The Expectation/Conditional Maximization Either algorithm which is the generalization of ECM algorithm attained by replacing some of the CM-steps of ECM which maximize the constrained expected complete-data log-likelihood, with steps that maximize correspondingly constrained real likelihood. The algorithm can have substantially faster convergence rate than either the EM algorithm or ECM measured using either the number of iterations or actual computer time. There are two reasons for this enhancement. First, in some of the ECME's maximization steps the actual likelihood is being conditionally maximized, rather than the current approximation to it as with EM and ECM. Second,

ECME permits faster converging numerical techniques to be used on only those constrained maximizations where they are most efficacious.

 


Related Discussions:- Ecme algorithm

Generalized method of moments (gmm), Generalized method of moments (gmm) is...

Generalized method of moments (gmm) is the estimation method popular in econometrics which generalizes the method of the moments estimator. Essentially same as what is known as the

Alternative hypotheses and spss calculation, 1) Question on the first day q...

1) Question on the first day questionnaire asked students to rate their response to the question Are you deeply moved by the arts or music? Assume the population that is sampled

Vital Statistics, meaning,uses,shortcomings and drawbacks of vital statist...

meaning,uses,shortcomings and drawbacks of vital statistics

Descriptive , Assume that a population is normally distributed with a mean ...

Assume that a population is normally distributed with a mean of 100 and a standard deviation of 15. Would it be unusual for the mean of a sample of 20 to be 115 or more?

Explain non-response, Non-response is the term generally used for the fail...

Non-response is the term generally used for the failure to give the relevant information being collected in the survey. Poor response can be because of the variety of causes, for

Tests for heteroscedasticity, Lagrange Multiplier (LM) test The Null Hy...

Lagrange Multiplier (LM) test The Null Hypothesis - H0: There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1

Kaiser''s rule, Kaiser's rule is the  rule frequently used in the principa...

Kaiser's rule is the  rule frequently used in the principal components analysis for selecting the suitable the number of components. When the components are derived from correlati

Chapter 7&8, Chapter 7 2. Describe the distribution of sample means (shape...

Chapter 7 2. Describe the distribution of sample means (shape, expected value, and standard error) for samples of n =36 selected from a population with a mean of µ = 100 and a sta

Quality-adjusted survival analysis, Quality-adjusted survival analysis is ...

Quality-adjusted survival analysis is a method for evaluating the effects of treatment on survival which allows the consideration of quality of life as well as the quantity of lif

Fibonacci distribution, The probability distribution of the various observa...

The probability distribution of the various observations is required to obtain the run of two successes in the series of Bernoulli trials with the probability of success equal to a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd