Distinct eigenvalues, Mathematics

Assignment Help:

It's now time to do solving systems of differential equations. We've noticed that solutions to the system,

x?' = A x?

It will be the form of,

x? = ?h elt

Here l and ?h are eigenvalues and eigenvectors of the matrix A. We will be working along with 2 x 2 systems therefore it means that we are going to be searching for two solutions, here the determinant of the matrix x?1 (t) and x?2 (t).

X =  (x?1 x?2)

They are non-zero.

We are going to start by searching the case where our two eigen-values, l1 and l2 are real and distinct. Conversely, they will be real, simple eigen-values. Recall suitably that the eigenvectors for easy eigenvalues are linearly independent. It means that the solutions we find from these will also be linearly independent. The matrix X should be nonsingular, herefore these two solutions will be a fundamental set of solutions, if the solutions are linearly independent. The general solution for this case will find be,

x?(t) = c1 el1t  ?h(1) + c2 el2t  ?h(2)

Remember that each of our illustrations will actually be broken in two illustrations. The first illustration will be solving by the system and the second illustration will be solving by sketching the phase portrait for the system. Phase portraits are not all the time taught in a differential equations course and thus we'll strip those out of the solution process hence if you haven't covered them in your class you can ignore the phase portrait illustration for the system.


Related Discussions:- Distinct eigenvalues

Fractions, is 1 and 1/2+2 and 1/7 3 and 9/4

is 1 and 1/2+2 and 1/7 3 and 9/4

Magnitude, find the magnitude of the following vectors:5i+7j

find the magnitude of the following vectors:5i+7j

Geometry of convex sets, (a) Given a norm jj jj on Rn, express the closed b...

(a) Given a norm jj jj on Rn, express the closed ball in Rn of radius r with center c as a set. (b) Given a set A and a vector v, all contained in Rn, express the translate of A by

Velocity problem, Velocity Problem : Let's look briefly at the velocity pr...

Velocity Problem : Let's look briefly at the velocity problem.  Several calculus books will treat it as its own problem.  .  In this problem we are given a position function of an

Calculus, what is the derivatives of y=u/5+7 and u=5x-35 using the chain ru...

what is the derivatives of y=u/5+7 and u=5x-35 using the chain rule?

Subspace of r containing n, Give an example of each of the following given ...

Give an example of each of the following given below . You do not require to give any justi cation. (a) A nonempty, bounded subset of Q with no in mum in Q. (b) A subspace of

One-to-one correspondence to developing pre-number concepts, One-to-one Cor...

One-to-one Correspondence :  Suppose you are given a certain number of cups and saucers, and are asked to find out whether there are enough saucers for all the cups. How would you

Largest number of vertices in a graph, a) Specify that a tree has at least ...

a) Specify that a tree has at least 2 vertices of degree 1.                               b) What is the largest number of vertices in a graph with 35 edges if all vertices are

Symmetric and anti-symmetric relation on a set, 1. Let A = {1,2, 3,..., n} ...

1. Let A = {1,2, 3,..., n} (a) How many relations on A are both symmetric and anti-symmetric? (b) If R is a relation on A that is anti-symmetric, what is the maximum number o

Discrete mathmatics, give an example of a relation R that is transitive whi...

give an example of a relation R that is transitive while inverse of R is not

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd