Determine the loss-by-defect and loss-by-dispersion, Mechanical Engineering

Determine the loss-by-defect and loss-by-dispersion

Given, Annual production = 1,00,000 units

Specification = 20 ± 4  i.e. m = 20, Δ = 4

Cost of repairing or resetting a product out-of-specification is Rs. 100.

a. Process I,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 20, σ = 1.33

b. Process II,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 18, σ = 0.66

c. Process III,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 17, σ = 0.40

Determine the loss-by-defect and loss-by-dispersion.

Solution

Process I

Given specifications 20±4

∴   USL = 24

    LSL = 16

Given process average (17_Determine the loss-by-defect and loss-by-dispersion 1.png) is mean

 centred at target m = 20 and σ = 1.33.

2215_Determine the loss-by-defect and loss-by-dispersion 2.png

= Min {24 - 20 /3 × 1.33, 20 - 16 /3 × 1.33}           

As both values are equal, we might use either of them as minimum value.

∴          C pk  =  4/ (3 × 1.33) = 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

= 0.0027 × 1,00,000 × 100

= 0.27 × 1,00,000

Loss-by-dispersion

Loss = Loss per piece × number of products

1642_Determine the loss-by-defect and loss-by-dispersion 3.png

k =    A/ Δ2 = 100/42  = 6.2

Process II

∴          Loss = 6.2 [(20 - 20)2 + 1.332] × 1,00,000

= 10.97 × 1,00,000

 The process average is observed to be centred at 18 with σ = 0.66

2319_Determine the loss-by-defect and loss-by-dispersion 4.png

= Min { 24 - 18  /3 × 0.66      , 18 - 16/3 × 0.66}     

C pk  =  18 - 16 / 3 × 0.66 = 1.01 ≈ 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

Standard normal variable at LSL

 At USL

Z 1 = 16 - 18/  0.66

 = - 3.03

Z2   =  24 - 18/0.66 = 9.09

∴          Proportion out of specification from tables,

= F (- 3.03) + F (9.09)

= 0.00122 + 0

= 0.00122

∴          Loss = 0.00122 × 100000 × 100

= 0.122 × 105 Rs.

Loss-by-dispersion

Loss = Loss per piece × Number of products

1723_Determine the loss-by-defect and loss-by-dispersion 5.png

k =    A/ Δ2

= 100 = 6.25

∴          Loss = 6.25 [(18 - 20)2 + 0.662] × 1,00,000

                     = 27.7 × 105

Process III

x = 17, σ = 0.40

562_Determine the loss-by-defect and loss-by-dispersion 6.png

= Min {24 - 17/3 ´0.4  , 17 - 16 /3´0.4}

= min {5.83, 0.83}

∴          PCI = 0.83

At LSL Z = 16 - 17 /0.4 = - 2.5

At USL Z = 24 - 17 /0.4 = 17.5

∴          Proportion out of specification, from tables

= F (- 2.5) + F (17.5)

= - F (2.5) + F (17.5)

= 0.00621 + 0

= 0.00621

∴ Loss by defect = Proportion out of specification × Total product

× Cost of product

= 0.00621 × 100000 × 100

= 0.621 × 105

Loss-by-dispersion

1539_Determine the loss-by-defect and loss-by-dispersion 7.png

= 6.25 [(17 - 20)2 + 0.42] × 100000

= 57.25 × 105

Posted Date: 12/26/2012 8:05:27 AM | Location : United States







Related Discussions:- Determine the loss-by-defect and loss-by-dispersion, Assignment Help, Ask Question on Determine the loss-by-defect and loss-by-dispersion, Get Answer, Expert's Help, Determine the loss-by-defect and loss-by-dispersion Discussions

Write discussion on Determine the loss-by-defect and loss-by-dispersion
Your posts are moderated
Related Questions
To select the project, if not already done - Radial Drilling Machine Due to above Problem?s in RADIALL DRILLING machine, now the select the project and solves the problems and

AUTOCAD HELP MENU In this section it will show the Drawing objects its will have some predifined oblects that will help , with some Lectures  notes .It also having options as s

when 2 bodies are connected by a string show the direction of acceleration

Turnouts: A turnout is an assembly of various components whereby a train running on one track may be diverted to another. A sketch of a left-hand turnout is given in Figur

How do i calculate the flame radius and flame speed if unstretched flame speed=2.8m/sec and markstein length=5 mm. ?

Cellulosic Electrodes In the AWS E 6010 and E 6011 series of electrodes, the protective covering is composed of cellulose (C6H10O5) and silicate binders. The cellulose decomposes

Q. What is Expansion Joints? Expansion joints are used to accommodate thermal growth in piping and pressure vessel applications. The metal bellows, an integral part of an expan

Heat Dissipation : During clutch application, large amount of heat is generated. The rubbing surfaces should have sufficient area and mass to absorb the generated heat. The proper

a) Answer the following equations by Gauss-Jordan method x 1 +2x 2 +x 3 =8 ; 2x 1 +3x 2 +4x 3 =20; 4x 1 +3x 2 +2x 3 = 16 b) Answer the following equations by Relaxation m

i am working as a packaging line design engineer & i need to connect 2 cup filling machines to a single line. how do i solve this