Deflection at the centre - simply supported beam, Mechanical Engineering

Deflection at the centre:

A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)

 

2109_Deflection at the centre - simply supported beam.png

Taking moments around A,

24 × 2 × 1 = RB  × 6

RB  = 8 kN (↑)                     -------- (2)

RA  = 48 - 8 = 40 kN (↑).         ------------(3)

By apply the Udl over the portion DB downwards and upwards,

 

                                 Figure

M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)

Note down that the third term vanishes if x < 2 m.

= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)

EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)

EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1

= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)

EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)

Here again note that the third term vanishes for x < 2 m.

at A,      x = 0,    y = 0  ∴ C2  = 0

at B,  x = 6 m,     y = 0         

0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6

C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3

∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)

The third term vanishes.

Slope at A, (x = 0),     27

θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)

            = -(1/300) rad = - 3.33 × 10- 3  rad

 

Slope at B, (x = 6 m),

EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)

 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)

= + 2.27 × 10- 3  radian

Slope at C, (x = 3 m), i.e. x > 2 m

EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)

θC = 20 /3 EI = 0.47 × 10- 3  radians

EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)

Deflection at centre, (x = 3 m),

EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3

yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)

= - 5 mm

For maximum deflection,

dy/ dx  = 0

0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)

= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)

=- 4x2  + 48 x - (296 /3)

∴          x2  - 12x + (74 /3 )= 0

x = 2.63 m , x > 2m

EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7

∴ ymax  = - 5.087 mm;  - 5.1 mm

Posted Date: 1/21/2013 5:32:03 AM | Location : United States







Related Discussions:- Deflection at the centre - simply supported beam, Assignment Help, Ask Question on Deflection at the centre - simply supported beam, Get Answer, Expert's Help, Deflection at the centre - simply supported beam Discussions

Write discussion on Deflection at the centre - simply supported beam
Your posts are moderated
Related Questions
How does the maximum the 10'''' flange horizontal offset allowable.

Illustrate the Types of special foundations Special foundations find use under following situation: i)  To meet the demands that are arising from uncommon environmental cond

Generation of steam at constant pressure: Steam is pure substance. Like any other pure substance it can also be converted into any of the three states, that is, solid, liquid

Represent moment Graphically: How you represent moment Graphically? Sol.: Consider force F which is represented in magnitude and direction, by   line AB . L

RESISTANCE WELDING PROCESSES The following five are the main types of resistance welding: 1. Spot welding 2. Seam welding 3. Projection welding 4. Upset butt we

How the boiler are classified? Sketch and define the babcock & Wilcox boiler and also Compare the water tube boiler and fire tube?

Flow Work and Flow Energy - thermodynamics: Flo w Work:  The flow work is energy needed to move the working substance against its pressure It is called as flow or displac

Determine maximum internal diameter of hollow shaft: A solid shaft of mild steel which is 200 mm in diameter is to be replaced by hollow shaft of alloy steel for which the al

A light cantilever of rectangular section (5cm deep and 2.5 cm wide) has a mass fixed at its free end. Find the ratio of frequency of free lateral vibration in vertical plane to th

Compute the intensity of normal stress: A uniform steel bar of 2 cm × 2 cm area of cross section is subjected to axial pull of 40000 kg. Compute the intensity of normal stres