Define tractable and intractable problems, Data Structure & Algorithms

Assignment Help:

Define tractable and intractable problems

Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are known as intractable problems.

 


Related Discussions:- Define tractable and intractable problems

State flowchart that take temperature input using pseudocode, Write an algo...

Write an algorithm using pseudocode which takes temperatures input over a 100 day period (once per day) and output the number of days when the temperature was below 20C and the num

Methods, what is folding method?

what is folding method?

B – trees, B-trees are special m-ary balanced trees utilized in databases s...

B-trees are special m-ary balanced trees utilized in databases since their structure allows records to be added, deleted & retrieved with guaranteed worst case performance. A B-

FIRST function in the compiler construction, I need a recursive algorithm t...

I need a recursive algorithm to implement the FIRST function to any grammar

Explain what is stack. describe ways to execute stack. , ST AC K is ...

ST AC K is explained as follows : A stack is one of the most usually used data structure. A stack is also called a Last-In-First-Out (LIFO) system, is a linear list in

Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

#binary search, Ask question #Minima binary search tree is used to locate t...

Ask question #Minima binary search tree is used to locate the number 43 which of the following probe sequences are possible and which are not? explainum 100 words accepted#

Time complexity, Run time complexity of an algorithm is depend on

Run time complexity of an algorithm is depend on

Splaying algorithm, Insertion & deletion of target key requires splaying of...

Insertion & deletion of target key requires splaying of the tree. In case of insertion, the tree is splayed to find the target. If, target key is found out, then we have a duplicat

Undirected graph and adjacency matrix, Q. Consider the specification writte...

Q. Consider the specification written below of a graph G V(G ) = {1,2,3,4} E(G ) = {(1,2), (1,3), (3,3), (3,4), (4,1)} (i)        Draw the undirected graph. (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd