Correlation - cause and effect, Applied Statistics

Cause and Effect

Even a highly significant correlation does not necessarily mean that a cause and effect relationship exists between the two variables. Thus, correlation does not necessarily imply causation or functional relationship though the existence of causation always implies correlation or association between variables. It might sometimes happen that a fair degree of correlation is observed between the two variables but this is only due to chance as the theory might indicate non-existence of cause and effect relationship. Such a correlation is known as spurious correlation. While interpreting the correlation coefficient, it is necessary to see whether there is any cause and effect relationship between the variables under study. If there is no such relationship, the correlation observed is meaningless.

Figure 1

733_cause and effect.png

Ferrochrome is a material used in the manufacture of stainless steel. Suppose, in recent times there has been such a large increase in the supply of ferrochrome worldwide that its international price has dropped.

The simplified figure above reveals that as supply increased from S1 to S2, prices fell from P1 to P2. Hence, there is an inverse correlation between supply and price, that is, when supply increases, prices fall. Further we can say that the increase in supply was the CAUSE that led to the EFFECT of falling prices. So far so good.

Now consider the figure given below:

Figure 2

1313_cause and effect1.png

Here we have plotted supply against price. We may now be tempted to say that the fall in price from P1 to P2 was the CAUSE that led to the EFFECT of increase in supply from S1 to S2. This does not make economic sense because a fall in price does not lead to an increase in supply. The problem is that we have reversed the cause (increase in supply) and the effect (fall in price).

Continuing the example, suppose supply increases from S1 to S2, but demand increases by a disproportionately larger quantity. As demand increases more than supply the price will increase. In such a case if we plot price against supply the simplified graph would be as follows:

Figure 3

1900_cause and effect2.png

Hence, when supply increases from S1 to S2, price increases from P1 to P2. This is again poor economics because an increase in supply should reduce prices and not increase prices. The problem here is that the main CAUSE for the increase in price is the disproportionate increase in demand which is not shown in the graph. Hence, by ignoring the vital factor of demand and by comparing supply with price we come up with a spurious positive correlation between supply and price which defies good economics.

Posted Date: 9/15/2012 4:02:00 AM | Location : United States







Related Discussions:- Correlation - cause and effect, Assignment Help, Ask Question on Correlation - cause and effect, Get Answer, Expert's Help, Correlation - cause and effect Discussions

Write discussion on Correlation - cause and effect
Your posts are moderated
Related Questions
In PCA the eigknvalues must ultimately account for all of the variance. There is no probability,'no hypothesis, no test because strictly speaking PCA is not a statistical procedure

Hi There, I have a question regarding R, and I am wondering if anyone can help me. Here is a code that I would like to understand: squareFunc g f(x)^2 } return(g) } sin

Show that when h = h* for the histogram, the contribution to AMISE of the IV and ISB terms is asymptotically in the ratio 2:1. Compare the sensitivity of the AMISE(ch) in Equa


The Tastee Bakery Company supplies a bakery product to many supermarkets in a metropolitan area. The company wishes to study the effect of shelf display height employed by the supe

First we look at these charts assuming that we know both the mean and the standard deviation of the process, that is  μ and  σ . These values represent the acceptable values (bench

Scatter Diagram The first step in correlation analysis is to visualize the relationship. For each unit of observation in correlation analysis there is a pair of numerical value

Measures of Dispersion Box 3: Food vs. Oil Below are the figures for foodgrain procurement   and cr

Simulation When decisions are to be taken under conditions of uncertainty, simulation can be used. Simulation as a quantitative method requires the setting up of a mathematical

In this problem, we use the CSDATA data set, which is available in 'CSDATA.txt'. We do ne an indicator variable, say HIGPA, to be 1 if the GPA is 3.0 or better and 0 other- wise. S