Comparison test for improper integrals - integration, Mathematics

Assignment Help:

Comparison Test for Improper Integrals

Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we aren't concerned along with the actual value of these integrals.  In place of it we might just only be interested in if the integral is convergent or divergent.  As well, there will be some integrals which we simply won't be capable to integrate and yet we would still such as to know if they converge or diverge.  

 To deal along with this we have got a test for convergence or divergence which we can use to assist us answer the question of convergence for a not proper integral. 

We will provide this test only for a sub-case of the infinite interval integral, though versions of the test exist for the other sub-cases of the infinite interval integrals also integrals with discontinuous integrands.

Comparison Test

If f (x) ≥ g (x) > 0 on the interval [a, ∞] then,

1. If ∫a f(x) converges then so does ∫a g(x) dx.

2. If ∫a g(x) dx diverges then so does ∫a f (x) dx.

Note: If you think in terms of area the Comparison Test makes a lot of sense. Determine if f (x) is larger than g(x) then the area within f (x) must as well be larger than the area under g(x). Thus, if the area within the larger function is finite after that the area under the smaller function has to be finite. Similarly, if the area under the smaller function is infinite after that the area within the larger function must as well be infinite. Be cautious not to misuse this test. If the smaller function converges there is no basis to believe that the larger will as well converge (after all infinity is larger as compared to a finite number...) and determine if the larger function diverges there is no reason to believe that the smaller function will also diverge.


Related Discussions:- Comparison test for improper integrals - integration

Numeric patterns, Kelli calls her grandmother every month Kelli also calls ...

Kelli calls her grandmother every month Kelli also calls her cousin.If Kelli calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by t

Stat, defination of uper boundarie .

defination of uper boundarie .

Calculus, The law of cosines can only be applied to acute triangles. Is thi...

The law of cosines can only be applied to acute triangles. Is this true or false?

Root test- sequences and series, Root Test- Sequences and Series This ...

Root Test- Sequences and Series This is the final test for series convergence that we're going to be searching for at.  Like with the Ratio Test this test will as well tell wh

Determine that the series is convergent or divergent, Determine or find out...

Determine or find out if the subsequent series is convergent or divergent.  If it converges find out its value. Solution To find out if the series is convergent we fir

Simple derivatives, Simple derivatives Example   Differentiate followin...

Simple derivatives Example   Differentiate following.  (5x 3   - 7 x + 1) 5 ,[ f ( x )] 5 ,[ y ( x )] 5 Solution: Here , with the first function we're being asked to

Need some clarity?, THE % PARTICIPATION Feature in a major medical expense ...

THE % PARTICIPATION Feature in a major medical expense policy is 75% with a $100 deductible. how much of a $2,000 bill is the insured responsible for paying?

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd