Class limits and class boundries, Mathematics

Class limits

These are numerical values, which limits uq extended of a given class that is all the observations in a provided class are expected to fall in the interval which is bounded by the class limits for illustration 15 & 19 are class limits as in the table of the illustration above.

Class boundaries

These are statistical boundaries, which separate one class from the other. They are normally determined by adding the lower class limit to the next upper class limit and dividing by 2 for illustration in the above table the class boundary among 19 and 20 is 19.5 that is =  (19 + 20)/2

Age (yrs)

No. of Students (f)

mid points (x)

x-a = d

D/c = u

fu

15 - 19

21

17

-15

-3

-63

20 - 24

35

22

-10

-2

-70

25 - 29

38

27

-5

-1

-38

30 - 34

49

32(A)

0

0

0

35 - 39

31

37

+5

+

31

40 - 44

19

42

+10

+2

38

 

193

 

 

 

-102

Posted Date: 2/15/2013 7:25:49 AM | Location : United States







Related Discussions:- Class limits and class boundries, Assignment Help, Ask Question on Class limits and class boundries, Get Answer, Expert's Help, Class limits and class boundries Discussions

Write discussion on Class limits and class boundries
Your posts are moderated
Related Questions
Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li


Function composition: The next topic that we have to discuss here is that of function composition. The composition of f(x) & g(x) is ( f o g ) ( x ) = f ( g ( x )) In other


Can you explain that it is true that a line that slopes downward from left to right has a positive slope?

Devise one activity each to help the child understand 'as many as' and 'one-to-one correspondence'. Try them out on a child/children in your neighbourhood, and record your observat

Example of Cartesian coordinate Graph: Example:   The temperature of water flowing in a high pressure line was measured at regular intervals.  Plot the subsequent recorded da


Is usual topology on R is comparable to lower limit topology on R

Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of