Calculates partial sum of an integer, Data Structure & Algorithms

Now, consider a function that calculates partial sum of an integer n. int psum(int n)


int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */


return partial_sum;                                                 /* Line 4 */


This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).

Posted Date: 4/4/2013 5:56:50 AM | Location : United States

Related Discussions:- Calculates partial sum of an integer, Assignment Help, Ask Question on Calculates partial sum of an integer, Get Answer, Expert's Help, Calculates partial sum of an integer Discussions

Write discussion on Calculates partial sum of an integer
Your posts are moderated
Related Questions
Develop a program that accepts the car registration( hint: LEA 43242010)

explain quick sort algorithm

Write down the algorithm of quick sort. An algorithm for quick sort: void quicksort ( int a[ ], int lower, int upper ) {  int i ;  if ( upper > lower ) {   i = split ( a,

1)      Why space complexity is comparatively more critical than time complexity? 2)      Determine the space complexity of Euclid Algorithm?

Decision Tree - ID3 algorithm: Imagine you only ever do one of the following four things for any weekend:   go shopping   watch a movie   play tennis   just

how to write a function of area of a circle using python

Define Binary Tree  A binary tree T is explained as a finite set of nodes that is either empty or having of root and two disjoint binary trees TL, and TR known as, respectively

What data structure would you mostly likely see in a nonrecursive execution of a recursive algorithm? Stack

1. What is an expert system and where are they needed? 2. What are the major issues involved in building an expert system?

HEAP  A heap is described to be a binary tree with a key in every node, such that  1-All the leaves of the tree are on 2 adjacent levels. 2- All leaves on the lowest leve