Calculate the total head loss between points, Electrical Engineering

Assignment Help:

Look at figure below and use.  Water (50°F) flows at 250 gpm through the pipe system at the bottom of this page. All piping is four inch (4") diameter cast iron. The distance between points A and B along the open flow path is 500 ft. Calculate the total head loss between points Aand B. Assume A and Bare at the same elevation. Use the following minor loss coefficients for the fittings:

Fitting Minor Loss Coefficient

Open Valve                                               0.20

90° Smooth Bend                                     0.35 (r/d = 1)

0.19 (r/d = 2)

0.16 (r/d = 4)

0.21 (r/d = 6)

0.28 (r/d = 8)

0.30 (r/d = 10)

Tee?                                                              0.6 (Straight-through flow)

                                                                   1.8 (Side-Outlet Flow)

90° Elbow                                                             0.30

474_Calculate the total head loss between points.png

A town is installing a new 10" main to carry drinking water. The only section remaining to be installed is a segment through the middle of town. However, the excavators discover an archaeological site. The town decides to split the main into two sections, each looping around the site and reconnecting at the other end. The mayor decrees that "the velocity in each branch around the site shall be equal". The town lays 800 feet of 6" pipe to the north of the site and connects to the 10" main leading away from town. However, the town then finds out there is no more 6" pipe. Anywhere. The only pipe available is 8" pipe. The contractor, noting that "shall" is a legally binding term when a contract is signed, must lay the proper amount of 8" pipe such that the velocity in the two branches is the same. Determine: a) the length of 8" pipe required, b) if instead, 800 feet of 8" pipe is laid parallel to the 6" pipe, the minor loss coefficient, K, for a valve that must be placed in the 8" line to exactly cause the velocities in the two pipes to balance. Assume for purposes of solving this problem that turbulent flow exists and the resistance coefficients, f, for the 6" pipe and 8' pipe are 0.023 and 0.019, respectively.


Related Discussions:- Calculate the total head loss between points

Coupling, different coupling methods

different coupling methods

., Ask quA 380-V, 15-hp, 50-Hz, four-pole, Y-connected wound-rotor inductio...

Ask quA 380-V, 15-hp, 50-Hz, four-pole, Y-connected wound-rotor induction motor has the following impedances in ohms per phase referred to the stator circuit: R1= 0.453? R2= 0.24

What are plastics, What are plastics? Plastics are materials (containi...

What are plastics? Plastics are materials (containing carbon as common element) that have organic substances of high molecular weight and are able of being formed in required

Clippers, Which clipper would you prefer between the series and the shunt c...

Which clipper would you prefer between the series and the shunt clipper? Why?

Unijunction transistor, In use, an appropriate bias voltage is applied betw...

In use, an appropriate bias voltage is applied between the two bases, with B2 made positive with respect to B1. Because the N-type bar is resistive, a relatively small current will

D.c machine, What are the advantages of distributing windings in an alterna...

What are the advantages of distributing windings in an alternator?

Compute the efficiency of the autotransformer, The single-phase, 50-kVA, 24...

The single-phase, 50-kVA, 2400:240-V, 60-Hz, two-winding distribution transformer is connected as a step-up autotransformer, as shown in Figure. Assume that the 240-V winding is pr

Determine the electric force on each charge, Q. Point charges, each of √4πε...

Q. Point charges, each of √4πε 0 C, are located at the vertices of an equilateral triangle of side a. Determine the electric force on each charge.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd