Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Function composition, Function composition: The next topic that we have to...

Function composition: The next topic that we have to discuss here is that of function composition. The composition of f(x) & g(x) is ( f o g ) ( x ) = f ( g ( x )) In other

Relative measures of dispersion-illustration, Illustration 2 In a ...

Illustration 2 In a described farm located in the UK the average salary of the employees is £ 3500 along with a standard deviation of £150 The similar firm has a local

Prove that sinx+cosx=? , Multiply and divide by root2, then root2/root2...

Multiply and divide by root2, then root2/root2(sinx+cosx) = root2(sinx/root2 + cosx/root2) = root2(sinx cos45+cosx sin45) = root2(sin(x+45))

Sketch the direction field for the differential equation, Sketch the direct...

Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and

Speed, how much distance is covered by a man if he is travelling at a speed...

how much distance is covered by a man if he is travelling at a speed of 45km/h in 5 sec

Ratio test - sequences and series, Ratio Test In this part we are goin...

Ratio Test In this part we are going to take a look at a test that we can make use to see if a series is absolutely convergent or not.  Remind that if a series is absolutely c

What is permutations explain with examples, What is Permutations explain wi...

What is Permutations explain with examples? Each arrangement of a set of elements is called a permutation. In other words, every possible way (order) of writing a group of lett

Fractions, how do i multiply and divide fractions?

how do i multiply and divide fractions?

Proportions, if oranges cost $2.40 a dozen, how much do 2 oranges cost?

if oranges cost $2.40 a dozen, how much do 2 oranges cost?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd