Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Technique of teching, What is a review technique? What are its advantages a...

What is a review technique? What are its advantages and disadvantages?

H, 6987+746-212*7665

6987+746-212*7665

Permutation and combination, howmany numbers made by digit 0,1,2,3,5,7,9 bu...

howmany numbers made by digit 0,1,2,3,5,7,9 but any digit isnot repeted

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

Find the area of shaded region, Find the area of shaded region, if the side...

Find the area of shaded region, if the side of square is 28cm and radius of the sector is ½ the length of side of square.

Determine the volume of the box, Safe deposit boxes are rented at the bank....

Safe deposit boxes are rented at the bank. The dimensions of a box are (22x5x5) in. Determine the volume of the box? a. 220 in 3 b. 550 in 3 c. 490 in 3 d. 360 in 3

Quadratic equation, find a quadratic equation whose roots are q+1/2 and 2p-...

find a quadratic equation whose roots are q+1/2 and 2p-1 with p+q=1

Radius of rhim, how long is the radius of car tyre?

how long is the radius of car tyre?

Computing change for a given coin system, This problem involves the questio...

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 (a) Let c ≥ 2 be an integer constant

Adding fractions with the same denominator, Q. Adding Fractions with the Sa...

Q. Adding Fractions with the Same Denominator? Adding fractions with the same denominator is easy- you add the numerators (the tops), and you leave the denominator alone!

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd