Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Formula to calculate the surface area of basketball, Keith wants to know th...

Keith wants to know the surface area of a basketball. Which formula will he use? The surface area of a sphere is four times π times the radius squared.

Arithmetic/geometric sequences and binomial expansion, find s10 for the ari...

find s10 for the arithmetic sequenxe inwhich a1=5 and a10=68

Find out the x-intercepts, Find out the x-intercepts & y-intercepts for eac...

Find out the x-intercepts & y-intercepts for each of the following equations.                            y =x 2 +x - 6 Solution As verification for each of these we wil

Find the tangent to the curve, 1. Find the third and fourth derivatives of ...

1. Find the third and fourth derivatives of the function Y=5x 7 +3x-6-17x -3 2. Find the Tangent to the curve Y= 5x 3 +2x-1 At the point where x = 2.

Rules of logarithms, Rule 1 The logarithm of 1 to any base is 0. Pro...

Rule 1 The logarithm of 1 to any base is 0. Proof We know that any number raised to zero equals 1. That is, a 0 = 1, where "a" takes any value. Therefore, the loga

Intervals of validity, I've termed this section as Intervals of Validity si...

I've termed this section as Intervals of Validity since all of the illustrations will involve them. Though, there is many more to this section. We will notice a couple of theorems

Word problem, Twins Olivia and Chelsea and their friend Rylee were celebrat...

Twins Olivia and Chelsea and their friend Rylee were celebrating their fourteenth birthdays with a party at the beach. The first fun activity was water games. As Nicole arrived, sh

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd