Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Conjugate of the complex number, The conjugate of the complex number a + b ...

The conjugate of the complex number a + b i is the complex number a - b i .  In other terms, it is the original complex number along the sign on the imaginary part changed.  Here

Calculus, I need help with my calculus work

I need help with my calculus work

Define number line, Q. Define Number Line? Ans. A number line is a...

Q. Define Number Line? Ans. A number line is a nice way to visualize and examine the ordering of the positive and negative numbers. Every positive and negative number that

Solve the algebraic equestions, Solve the following equestions i.2x-8=8 ...

Solve the following equestions i.2x-8=8 ii.3x+2/5=4 iii.8/3x-2=2 iv.0.6x-5=7

High self-esteem helps learning-how do children learn?, High Self-esteem He...

High Self-esteem Helps Learning :  Consider Ajay, a student of Class 2. He is constantly told by his irritated father, "How stupid you are! You don't even understand this! Even yo

Find out the total number of pounds of coffee purchased, Megan bought x pou...

Megan bought x pounds of coffee in which cost $3 per pound and 18 pounds of coffee at $2.50 per pound for the company picnic. Find out the total number of pounds of coffee purchase

Line plots, how to you find the difference between different line plots

how to you find the difference between different line plots

The shape of a graph, The Shape of a Graph, Part I : In the earlier secti...

The Shape of a Graph, Part I : In the earlier section we saw how to employ the derivative to finds out the absolute minimum & maximum values of a function.  Though, there is many

Examples of elimination technique - linear algebra, Explain some examples o...

Explain some examples of Elimination technique of Linear Equations.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd