Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Functions, find the derived functions

find the derived functions

How to adding polynomials, How to Adding Polynomials? The numerical par...

How to Adding Polynomials? The numerical part of a monomial is called the coefficient. For example, the coefficient of 5x is 5. The coefficient of -7a 2 b 3 is -7. Like

What is the volume of the frustum, If the areas of the circular bases of a ...

If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Subtract, Ask question Minimum 100 words accepted# 1000-101

Ask question Minimum 100 words accepted# 1000-101

Calcukus, A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an ...

A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an initial dose of 1600 mg will the drug reach its minimum therapeutic value of 900 mg in the body?

Comparing, compare 643,251 633,512 and 633.893 the answer is 633.512 what i...

compare 643,251 633,512 and 633.893 the answer is 633.512 what is the question

Obtain the number of significant modes, On the Assessment page for the modu...

On the Assessment page for the module Moodle site you will find five frequency response functions for the frequency range 20 to 100 Hz in the EXCEL spreadsheet "FRF_Data". These a

Spring force, Spring, F s We are going to suppose that Hooke's Law wil...

Spring, F s We are going to suppose that Hooke's Law will govern the force as the spring exerts on the object. This force will all the time be present suitably and is F s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd