Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Calculate one-sided limits, Calculate the value of the following limits. ...

Calculate the value of the following limits. Solution From the graph of this function illustrated below, We can illustrate that both of the one-sided limits suffer

Topological spease, let X be a nonempty set. let x belong to X. show that t...

let X be a nonempty set. let x belong to X. show that the collection l={ union subset of X : union = empty or belong U

What is trigonometric ratios, What is Trigonometric Ratios ? Trigonome...

What is Trigonometric Ratios ? Trigonometry, a branch of mathematics, is based on the ratios known as sine, cosine, and tangent. Trigonometric ratios apply only to right trian

????????, ?????? ?????? ?? ???? ??????? ???????? ?????? 3.5 ?? ??? ???? ???...

?????? ?????? ?? ???? ??????? ???????? ?????? 3.5 ?? ??? ???? ???? ????? 50??/???? ??????20??/???? ???? ?? ?? ?????? ???????? ??? ??? ?? ??????? ??????? ? ?? ????? ????

Evaluate the inverse function , Question: a. What is the inverse of f (...

Question: a. What is the inverse of f (x)? b. Graph the inverse function from part (a). c. Rewrite the inverse function from part (a) in exponential form. d. Evaluate

Rate of change interpretation of derivative, Rate of Change : The first in...

Rate of Change : The first interpretation of derivative is rate of change.  It was not the primary problem which we looked at in the limit chapter, however it is the most signific

What are the angles of depression from observing position, In Figure, what ...

In Figure, what are the angles of depression from the observing positions O 1 and O 2 of the object at A?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd