Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Integration, how to learn integration?easier

how to learn integration?easier

Find out the mean wait in line - probability, Example of Probability I...

Example of Probability Illustration:  It has been determined that the probability density function for the wait in line at a counter is specified by, In which t is the

Lengrange''s mean value theorem, real life applications of lengrange''s mea...

real life applications of lengrange''s mean value theorem

Determine the circumference, If Gretta's bicycle has a 25-inch radius wheel...

If Gretta's bicycle has a 25-inch radius wheel, how far will she travel in two turns of the wheel? (π = 3.14) a. 491 in b. 78.5 in c. 100 in d. 157 in d. To determin

Explain how to converting percents to decimals , Explain how to Converting ...

Explain how to Converting Percents to Decimals ? Percent : "Percent" means "per hundred." Percents are represented by a percent sign ( % ) to the right of a number.  For exam

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Discrete mathematics for computing, Everything stored on a computer can be ...

Everything stored on a computer can be represented as a string of bits. However, different types of data (for example, characters and numbers) may be represented by the same strin

What is equivalence relation, What is equivalence relation?  Prove that rel...

What is equivalence relation?  Prove that relation  'congruence modulo' (  ≡mod m) is an equivalence relation.  Ans: A relation R illustrated on a nonempty set A is said to be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd