Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Advanced functions, writ the equation that describes the motion of a point ...

writ the equation that describes the motion of a point on the wheel that has a center of 4m off the ground, has radius of 15 cm, makes a full rotation every 10 seconds and starts a

Percentage, A person spent 12.5% of his money and then rs.1600 and then 40%...

A person spent 12.5% of his money and then rs.1600 and then 40% of the remaining,now left rs.960 with him.What is his original money?

One step ahead, how do we figure it out here is an example 3,4,6,9,_,_,_,_...

how do we figure it out here is an example 3,4,6,9,_,_,_,_,_,. please help

Length of the hypotenuse , A right triangular prism has volume equal to 288...

A right triangular prism has volume equal to 288 cm^3. The height of the prism is 3 cm. One of the bases of the triangular face (not the hypotenuse) is equal to 12 cm, determine th

Two circles touch internally, Two circles touch internally at a point P and...

Two circles touch internally at a point P and from a point T on the common tangent at P, tangent segments TQ and TR are drawn to the two circles. Prove that TQ = TR. Given:

Find the area of section a, The picture frame given below has outer dimensi...

The picture frame given below has outer dimensions of 8 in by 10 in and inner dimensions of 6 in by 8 in. Find the area of section A of the frame. a. 18 in 2 b. 14 in 2

Fractions, how do you convert in a quicker way?

how do you convert in a quicker way?

Example of graphing equations, Example of Graphing Equations: Example...

Example of Graphing Equations: Example: By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes. T

Work in volume problems, Work : It is the last application of integr...

Work : It is the last application of integral which we'll be looking at under this course. In this section we'll be looking at the amount of work which is done through a forc

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd