Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Percentage, By selling a violin for $4950, giving a 10% discount on the mar...

By selling a violin for $4950, giving a 10% discount on the marked price, a trader gained $950 on his investment, Find, Cost price.

What is order of operations simplifying expressions, What is Order of Opera...

What is Order of Operations Simplifying Expressions? Kevin gives Don directions to his house: "Go left 3 blocks and then go right 2 blocks." Don wasn't paying close attention.

Division, Before taking up division of polynomials, let us acquaint...

Before taking up division of polynomials, let us acquaint ourselves with some basics. Suppose we are asked to divide 16 by 2. We know that on dividing 16 by

Curvature - three dimensional space, Curvature - Three Dimensional Space ...

Curvature - Three Dimensional Space In this part we want to briefly discuss the curvature of a smooth curve (remind that for a smooth curve we require → r′ (t) is continuou

Triangles, In a triangle ABC, D &E is a are points on AB & AC ,if the one s...

In a triangle ABC, D &E is a are points on AB & AC ,if the one side of a triangle is 4cm & another side is 5 cm find that the ar(triangleABC):ar(BCDE)

In the terms of x, The length of Kara's rectangular patio can be expressed ...

The length of Kara's rectangular patio can be expressed as 2x - 1 and the width can be expressed as x + 6. In the terms of x, what is the area of her patio? Since the area of a

Find out primes of each denominator, Find out primes of each denominator: ...

Find out primes of each denominator: Add 1/15 and 7/10 Solution: Step 1:             Find out primes of each denominator. 15 = 5 x 3 10 = 5 x 2 Step 2:

The perimeter square can be expressed as x + 4 estimate x, The perimeter of...

The perimeter of a square can be expressed as x + 4. If one side of the square is 24, what is the value of x? Since the perimeter of the square is x + 4, and a square has four

What are inclusive events, Q. What are Inclusive Events? Ans. Even...

Q. What are Inclusive Events? Ans. Events that can occur at the same time are called inclusive events. For example, a student can belong to more than one club at one time

Greens function, construct the green''s function that satisfies dG''''-(2x+...

construct the green''s function that satisfies dG''''-(2x+1)G''+(x+1)G=delta(x-s), G(0,s)=G(1,s)=0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd