Arithmetic progression (a.p.), Mathematics

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1

Posted Date: 9/13/2012 4:18:07 AM | Location : United States







Related Discussions:- Arithmetic progression (a.p.), Assignment Help, Ask Question on Arithmetic progression (a.p.), Get Answer, Expert's Help, Arithmetic progression (a.p.) Discussions

Write discussion on Arithmetic progression (a.p.)
Your posts are moderated
Related Questions
Data entry is performed in 2-person teams. Each 2-person team can enter 520 surveys per day. A selection of 7540 surveys must be entered by day''s end. How many total employees, wo

How to Converting Fractions to Decimals explain with example? To convert fractions to decimals, divide the numerator by the denominator. The quotient is the decimal. Ex


a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

What are the key features of Greek Mathematics? How does the emphasis on proof affect the development of Greek Mathematics?

Illustration of Rank Correlation Coefficient In a beauty competition two assessors were asked to rank the 10 contestants by using the professional assessment skills. The resul

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

1. The polynomial G(x) = -0.006x4 + 0.140x3 - 0.53x2 + 1.79x measures the concentration of a dye in the bloodstream x seconds after it is injected. Does the concentration increase

what is the basic unit of weight in the metric system?