Arithmetic progression (a.p.), Mathematics

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.


If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1

Posted Date: 9/13/2012 4:18:07 AM | Location : United States

Related Discussions:- Arithmetic progression (a.p.), Assignment Help, Ask Question on Arithmetic progression (a.p.), Get Answer, Expert's Help, Arithmetic progression (a.p.) Discussions

Write discussion on Arithmetic progression (a.p.)
Your posts are moderated
Related Questions
(a)   Specify that  the sum of  the degrees  of all vertices of a graph  is double the number of edges  in  the graph.                            (b)  Let G be a non directed gra

how is the male orgasm?

advantages and disadvantages of index numbers

What are the properties of Normal distribution? The normal curve is symmetrical when p=q or p≈q The normal curve is a single peaked curve The normal curve is asymptotic t

1. Find the number of zeroes of the polynomial y = f(x) whose graph is given in figure. 2 Find the circumcentre of the triangle whose vertices are (-2, -3), (-1, 0) and (7,-6).

In class 1, the teacher had written down the digits 0,1, ...., 9 on the board. Then she made all the children recite the corresponding number names. Finally, she made them write th

compare: 643,251: 633,512: 633,893. The answer is 633,512.

A simple example of fraction would be a rational number of the form p/q, where q ≠ 0. In fractions also we come across different types of them. The two fractions

The sum of two integers is 36, and the difference is 6. What is the smaller of the two numbers? Let x = the ?rst integer and let y = the second integer. The equation for the su