Arithmetic progression (a.p.), Mathematics

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.


If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1

Posted Date: 9/13/2012 4:18:07 AM | Location : United States

Related Discussions:- Arithmetic progression (a.p.), Assignment Help, Ask Question on Arithmetic progression (a.p.), Get Answer, Expert's Help, Arithmetic progression (a.p.) Discussions

Write discussion on Arithmetic progression (a.p.)
Your posts are moderated
Related Questions
Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, -7).

#question.Mai is 3 years ypunger than twice the age of her brother .If b represents .

Physical fitness association 1 mile run. It is known to have a normal distribution, mean 450 sec. SD 50 sec. How many in the top 10% fastest runners? Need to know what time they ha

A number x is selected from the numbers 1,2,3 and then a second number y is randomly selected  from  the  numbers  1,4,9. What  is  the  probability that  the product xy of the two

how to work out consumer arithmetic?

Average Function Value The first application of integrals which we'll see is the average value of a function. The given fact tells us how to calculate this. Average Functi

Standard interpretations to derivatives Example   Assume that the amount of money in a bank account is specified by                                       P (t ) = 500 + 10

sq root of tan x dx

Mike, Dan, Ed, and Sy played together on a baseball team. Mike's batting average was 0.349, Dan's was 0.2, Ed's was 0.35, and Sy's was 0.299. Who had the highest batting average?