write a program to find the area under the curvey y=f(x) between x=a and x=b.integrate y=f(x) between the limits of a and b.the area under a curve between two points can be found by doing a definite integral between the two points
#include float start_point, /* GLOBAL VARIABLES */ end_point, total_area; int numtraps; main( ) { void input(void ); float find_area(float a,float b,int n); /* prototype */ print(“AREA UNDER A CURVE”); input( ); total_area = find_area(start_point, end_point, numtraps); printf(“TOTAL AREA = %f”, total_area); } void input(void ) { printf(“\n Enter lower limit:”); scanf(“%f”, &start_point); printf(“Enter upper limit:”); scanf(“%f”, &end_point); printf(“Enter number of trapezoids:”); scanf(“%d”, &numtraps); } float find_area(float a, float b, int n) { float base , lower, h1, h2; /* LOCAL VARIABLES */ float function_x(float x); /* prototype */ float trap_area(float h1,float h2,float base );/*prototype*/ base = (b-1)/n; lower = a; for (lower =a; lower <= b-base ; lower = lower + base ) { h1 = function_x(lower); h1 = function_x(lower + base ); total_area += trap_area(h1, h2, base ); } return (total_area); float trap_area(float height_1,float height_2,float base ) { float area; /* LOCAL VARIABLE */ area = 0.5 * (height_1 + height_2) * base ; return (area); } float function_x(float x) { /* F(X) = X * X + 1 */ return (x*x + 1); } Output AREA UNDER A CURVE Enter lower limit: 0 Enter upper limit: 3 Enter number of trapezoids: 30 TOTAL AREA = 12.005000 AREA UNDER A CURVE Enter lower limit: 0 Enter upper limit: 3 Enter number of trapezoids: 100 TOTAL AREA = 12.000438