area under curve, C/C++ Programming

Assignment Help:

write a program to find the area under the curve y=f(x) between x=a & x=b

Related Discussions:- area under curve

Explain the function prototype - computer programming, Explain the Function...

Explain the Function Prototype? The Functions must be declared before they are used, ANSI C provides for the new function declaration syntax called as the function prototype,

Read three ints from keyboard and store seperatly , Suppose that three inte...

Suppose that three integer variables intA, intB, and intC have already been defined at the beginning of the main function, write a single C++ statement to read three integers from

Equation, My project is compiling but the equation entered is not working

My project is compiling but the equation entered is not working

Copy constructor, What is copy constructor? describe the concept of copy co...

What is copy constructor? describe the concept of copy constructor.

Explain destructors, Destructors A destructor function gets implemented...

Destructors A destructor function gets implemented whenever an instance of the class to which it belongs goes out of existence. The primary usage of a destructor function is

Luminous jewels polishing necklace, 1.jewels can only be removed for polish...

1.jewels can only be removed for polishing from either end of the necklace. 2.cost of polishing=sitting number*colour value of jewels.

C program for find even & odd no.s in the array , C Program for FIND EVEN &...

C Program for FIND EVEN & ODD NO.S IN THE ARRAY #include stdio.h> #include string.h> #include conio.h> void main() {           int i=0,j=0, l_e[100],l_o[100];

What do you mean by a sequential access file, What do you mean by a sequent...

What do you mean by a sequential access file? - When writing programs which store and retrieve data in a file, it's possible to designate that file into various forms. - A s

diana

9/4/2012 4:19:48 AM

#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd