Algorithm to sort a given list by quick sort method, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to sort a given list by making use of Quick sort method. Describe the behaviour of Quick sort when input given to us is already sorted.                                  

Ans.

Algorithm for Quick Sort is written below

QUICK(A, N, BEG, END, LOC)

Here A is an array with N element. Parameter BEG

and END comprises the   boundary value of the sub

list of A to which this method applies. LOC keeps track of the position of the first element A[BEG] of the sublist during the particular procedure. The local varrible LEFT     and  RIGHT will contain the boundary value of the list elements that have not been scanned.

1. [Initialize]   Set LEFT:=BEG, RIGHT;=END and LOC:=BEG.

2. [Scan from left to right]

(a) Repeat while A[LOC] <=A[RIGHT] and LOC!=RIGHT; RIGHT:=RIGHT-1; [End of loop]

(b)If LOC= RIGHT, then Return;

(c)If A[LOC ] > A[RIGHT],then: [Interchange    A[LOC] and A[RIGHT]] TEMP:=  A[LOC]  ,A[LOC] =  A[RIGHT] , A[RIGHT] :=TEMP;

(i) Set LOC =RIGHT

(ii)      Go to step 3

3.[Scan from left to right]

repeat while A[LEFT] <=A[LOC] and  LEFT!= LOC; LEFT := LEFT +1; [End of loop]

(a) If LOC  =LEFT, then Return;

(b) If  A[LEFT]  > A[LOC] ,then

(i) [Interchange A[LEFT]  and A[LOC]] TEMP:=A[LOC],A[LOC]:=A[LEFT] . A[LEFT]:= TEMP

(ii) Set LOC :=LEFT (iii) Go to Step 2; [End of if structure]

(Quicksort) This algorithm sorts an array A with N elements.

1. [Intialize.] TOP := NULL

2. [Push boundary values of A onto stacks when A has 2 or more elements.]

If  N>1, then: TOP+1,LOWER [1]:=1, UPPER [1]: =N

3. Repeat steps 4 to 7 while TOP != NULL.

4. [Pop sublist from stacks.]

Set BEG: =LOWER[TOP], END:=UPPER[TOP], TOP:=TOP-1.

5. Call QUICK (A, N, BEG, END, LOC). [ Push left

sublist onto stacks when it has 2 or more elements.]

If BEG < LOC -1, then:

TOP:= TOP+1, LOWER[TOP] := BEG, UPPER[TOP]= LOC -1.

[End of If structure.]

6. [Push right sublist onto stacks when it has 2

or more elements.]

If  LOC +1< END , then:

TOP := TOP+1, LOWER[TOP] := LOC +1, UPPER[TOP] := END.

[End of If structure .] [End of Step 3 loop.]

7. Exit.

The behaviour of quick sort when the list is sorted is of order O(n2) as this is the worst case for quicksort


Related Discussions:- Algorithm to sort a given list by quick sort method

Which sorting algorithm is adaptable to singly linked list, Which sorting a...

Which sorting algorithm is easily adaptable to singly linked lists? Simple Insertion sor t is easily adabtable to singly linked list.

A tree having ''m'' nodes has (m-1) branches. prove., Q. Prove the hypothes...

Q. Prove the hypothesis that "A tree having 'm' nodes has exactly (m-1) branches".      Ans: A tree having m number of nodes has exactly (m-1) branches Proof: A root

Indexed sequential file organisation, When there is requirement to access r...

When there is requirement to access records sequentially by some key value and also to access records directly by the similar key value, the collection of records may be organized

Example of pre order traversal, Example of pre order traversal: Reading of...

Example of pre order traversal: Reading of a book, since we do not read next chapter unless we complete all sections of previous chapter & all its sections. Figure  : Rea

Stack and queue, write a algorithsm in c to perform push and pop operation...

write a algorithsm in c to perform push and pop operations stastic implementation using array ?

Sparse matrices, SPARSE MATRICES Matrices along with good number of zer...

SPARSE MATRICES Matrices along with good number of zero entries are called sparse matrices. Refer the following matrices of Figure (a)

Insertion of a node into an avl tree, Initially Nodes are inserted in an AV...

Initially Nodes are inserted in an AVL tree in the same manner as an ordinary binary search tree. Though, the insertion algorithm for any AVL tree travels back along with the pa

ERM, Hi, can you give me a quote for an E-R diagram

Hi, can you give me a quote for an E-R diagram

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd