Algorithm to sort a given list by quick sort method, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to sort a given list by making use of Quick sort method. Describe the behaviour of Quick sort when input given to us is already sorted.                                  

Ans.

Algorithm for Quick Sort is written below

QUICK(A, N, BEG, END, LOC)

Here A is an array with N element. Parameter BEG

and END comprises the   boundary value of the sub

list of A to which this method applies. LOC keeps track of the position of the first element A[BEG] of the sublist during the particular procedure. The local varrible LEFT     and  RIGHT will contain the boundary value of the list elements that have not been scanned.

1. [Initialize]   Set LEFT:=BEG, RIGHT;=END and LOC:=BEG.

2. [Scan from left to right]

(a) Repeat while A[LOC] <=A[RIGHT] and LOC!=RIGHT; RIGHT:=RIGHT-1; [End of loop]

(b)If LOC= RIGHT, then Return;

(c)If A[LOC ] > A[RIGHT],then: [Interchange    A[LOC] and A[RIGHT]] TEMP:=  A[LOC]  ,A[LOC] =  A[RIGHT] , A[RIGHT] :=TEMP;

(i) Set LOC =RIGHT

(ii)      Go to step 3

3.[Scan from left to right]

repeat while A[LEFT] <=A[LOC] and  LEFT!= LOC; LEFT := LEFT +1; [End of loop]

(a) If LOC  =LEFT, then Return;

(b) If  A[LEFT]  > A[LOC] ,then

(i) [Interchange A[LEFT]  and A[LOC]] TEMP:=A[LOC],A[LOC]:=A[LEFT] . A[LEFT]:= TEMP

(ii) Set LOC :=LEFT (iii) Go to Step 2; [End of if structure]

(Quicksort) This algorithm sorts an array A with N elements.

1. [Intialize.] TOP := NULL

2. [Push boundary values of A onto stacks when A has 2 or more elements.]

If  N>1, then: TOP+1,LOWER [1]:=1, UPPER [1]: =N

3. Repeat steps 4 to 7 while TOP != NULL.

4. [Pop sublist from stacks.]

Set BEG: =LOWER[TOP], END:=UPPER[TOP], TOP:=TOP-1.

5. Call QUICK (A, N, BEG, END, LOC). [ Push left

sublist onto stacks when it has 2 or more elements.]

If BEG < LOC -1, then:

TOP:= TOP+1, LOWER[TOP] := BEG, UPPER[TOP]= LOC -1.

[End of If structure.]

6. [Push right sublist onto stacks when it has 2

or more elements.]

If  LOC +1< END , then:

TOP := TOP+1, LOWER[TOP] := LOC +1, UPPER[TOP] := END.

[End of If structure .] [End of Step 3 loop.]

7. Exit.

The behaviour of quick sort when the list is sorted is of order O(n2) as this is the worst case for quicksort


Related Discussions:- Algorithm to sort a given list by quick sort method

Graph, multilist representation of graph

multilist representation of graph

Determine in brief the painter algorithm, Determine in brief the Painter A...

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Explain the bubble sort algorithm, Explain the bubble sort algorithm. ...

Explain the bubble sort algorithm. Answer This algorithm is used for sorting a list. It makes use of a temporary variable for swapping. It compares two numbers at an insta

The complexity of searching an element, The complexity of searching an elem...

The complexity of searching an element from a set of n elements using Binary search algorithm is   O(log n)

Complexity of algorithm, The simplest implementation of the Dijkstra's algo...

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

Perform breadth -first search, You are given two jugs, a 4-gallon one and a...

You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring marker on it. There is a tap that can be used to fill the jugs with water. How can you get exac

Explain the assertions in ruby, Explain the Assertions in Ruby Ruby off...

Explain the Assertions in Ruby Ruby offers no support for assertions whatever. Moreover, because it's weakly typed, Ruby doesn't even enforce rudimentary type checking on opera

Describe commonly used asymptotic notations, Q.1 Compare two functions n 2 ...

Q.1 Compare two functions n 2 and 2 n for various values of n. Determine when second becomes larger than first. Q.2 Why do we use asymptotic notation in the study of algorit

Explain time complexity, Time Complexity, Big O notation The amount of ...

Time Complexity, Big O notation The amount of time needed by an algorithm to run to its completion is referred as time complexity. The asymptotic running time of an algorithm i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd