Algorithm to sort a given list by quick sort method, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to sort a given list by making use of Quick sort method. Describe the behaviour of Quick sort when input given to us is already sorted.                                  

Ans.

Algorithm for Quick Sort is written below

QUICK(A, N, BEG, END, LOC)

Here A is an array with N element. Parameter BEG

and END comprises the   boundary value of the sub

list of A to which this method applies. LOC keeps track of the position of the first element A[BEG] of the sublist during the particular procedure. The local varrible LEFT     and  RIGHT will contain the boundary value of the list elements that have not been scanned.

1. [Initialize]   Set LEFT:=BEG, RIGHT;=END and LOC:=BEG.

2. [Scan from left to right]

(a) Repeat while A[LOC] <=A[RIGHT] and LOC!=RIGHT; RIGHT:=RIGHT-1; [End of loop]

(b)If LOC= RIGHT, then Return;

(c)If A[LOC ] > A[RIGHT],then: [Interchange    A[LOC] and A[RIGHT]] TEMP:=  A[LOC]  ,A[LOC] =  A[RIGHT] , A[RIGHT] :=TEMP;

(i) Set LOC =RIGHT

(ii)      Go to step 3

3.[Scan from left to right]

repeat while A[LEFT] <=A[LOC] and  LEFT!= LOC; LEFT := LEFT +1; [End of loop]

(a) If LOC  =LEFT, then Return;

(b) If  A[LEFT]  > A[LOC] ,then

(i) [Interchange A[LEFT]  and A[LOC]] TEMP:=A[LOC],A[LOC]:=A[LEFT] . A[LEFT]:= TEMP

(ii) Set LOC :=LEFT (iii) Go to Step 2; [End of if structure]

(Quicksort) This algorithm sorts an array A with N elements.

1. [Intialize.] TOP := NULL

2. [Push boundary values of A onto stacks when A has 2 or more elements.]

If  N>1, then: TOP+1,LOWER [1]:=1, UPPER [1]: =N

3. Repeat steps 4 to 7 while TOP != NULL.

4. [Pop sublist from stacks.]

Set BEG: =LOWER[TOP], END:=UPPER[TOP], TOP:=TOP-1.

5. Call QUICK (A, N, BEG, END, LOC). [ Push left

sublist onto stacks when it has 2 or more elements.]

If BEG < LOC -1, then:

TOP:= TOP+1, LOWER[TOP] := BEG, UPPER[TOP]= LOC -1.

[End of If structure.]

6. [Push right sublist onto stacks when it has 2

or more elements.]

If  LOC +1< END , then:

TOP := TOP+1, LOWER[TOP] := LOC +1, UPPER[TOP] := END.

[End of If structure .] [End of Step 3 loop.]

7. Exit.

The behaviour of quick sort when the list is sorted is of order O(n2) as this is the worst case for quicksort


Related Discussions:- Algorithm to sort a given list by quick sort method

String pattern matching, Document processing is quickly becoming one of the...

Document processing is quickly becoming one of the dominant functions of computers. Computers are utilized to edit, search & transport documents over the Internet, and to display d

Kruskals algorithm, Krushkal's algorithm uses the concept of forest of tree...

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edg

Decision tree, . Create a decision table that describes the movement of inv...

. Create a decision table that describes the movement of inventory

Non-recursive algorithm, Q .  Write down the non-recursive algorithm to tra...

Q .  Write down the non-recursive algorithm to traverse a tree in preorder. Ans: T he Non- Recursive algorithm for preorder traversal is written below: Initially i

What is gouraud shading, Gouraud Shading The faceted appearance of a La...

Gouraud Shading The faceted appearance of a Lambert shaded model is due to each polygon having only a single colour. To avoid this effect, it is necessary to vary the colour ac

Abstract data type-stack, Conceptually, the stack abstract data type mimics...

Conceptually, the stack abstract data type mimics the information kept into a pile on a desk. Informally, first we consider a material on a desk, where we might keep separate stack

Complexity of quick sort, Q. What do you mean by the best case complexity o...

Q. What do you mean by the best case complexity of quick sort and outline why it is so. How would its worst case behaviour arise?

A binary tree of depth "d" is an almost complete binary tree, A binary tree...

A binary tree of depth "d" is an almost complete binary tree if  A) Every leaf in the tree is either at level "d" or at level "d-1"  B)  For any node "n" in the tree with a

Explain the bubble sort algorithm, Explain the bubble sort algorithm. ...

Explain the bubble sort algorithm. Answer This algorithm is used for sorting a list. It makes use of a temporary variable for swapping. It compares two numbers at an insta

Program segment for quick sort, Illustrates the program segment for Quick s...

Illustrates the program segment for Quick sort. It uses recursion. Program 1: Quick Sort Quicksort(A,m,n) int A[ ],m,n { int i, j, k; if m { i=m; j=n+1; k

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd