Air-system in aircraft engine, Other Engineering

Assignment Help:

Air-System in Aircraft Engine:

In the working cycle and airflow section we discussed the main airflow and working cycle of a gas turbine engine and found that a major function of the airflow through the engine was to act as a cooling medium and that only a small proportion of the air was used to support combustion. In fact, because of the intense heat developed, gas turbine engines only became practical power units when it was discovered that the airflow could be used to ‘insulate' the structural materials and thus provide acceptable working temperatures for the materials. Many parts of the engine, made from light alloy or ferrous metals, have to be protected from the very high temperatures. To achieve this, an efficient and effective cooling system is needed and this is provided by ducting cooling air from the main gas stream.

1191_air system.png

In addition to its function of cooling, the airflow is also used to pressurise oil seals and bearings to prevent oil leakage. We thus have the two functions of cooling and sealing to consider. In general, independent airflow's are taken from the engine compressors to provide:-
• Low pressure for sealing.
• Intermediate pressure air for some cooling functions.
• High-pressure air for the remainder of the cooling functions.
These are considered in the paragraphs that follow.

INTERNAL COOLING AIRFLOW

Because of the different design features of different gas turbine engines, the cooling airflow varies considerably from one engine type to another. However, the basic principles remain the same and can be explained by using an example. Figure 12.1. shows the cooling and sealing airflow of a two-spool, low ratio by-pass engine. To show the cooling airflow more clearly, the by-pass and main air-stream air paths have been omitted.

A study of the figure will show that air is supplied from the low-pressure compressor and also from the high-pressure compressor. This gives the range of pressures required, as mentioned in the previous paragraph. After doing its job, the air is either vented directly to atmosphere or fed into the exhaust gas flow.

LOW PRESSURE AIR

Air is taken from the low-pressure compressor outlet and ducted through the engine to become both a sealing and cooling airflow. This airflow:-
• Pressurises the main bearing oil seals to prevent oil leakage.
• Provides cooling for the low-pressure compressor shaft, the front half of the high-pressure compressor shaft and the turbine shaft.

INTERMEDIATE PRESSURE AIR

This airflow is taken from an intermediate stage of the high pressure compressor and passes through transfer ports to cool the rear half of the high pressure compressor shaft and also the rear face of the last disc of the compressor; it then flows outwards through tubes to mix with the by-pass airstream.

HIGH PRESSURE AIR

This airflow is taken from the high-pressure compressor outlet and is ducted to all faces of the turbine discs to maintain the temperature within the required limits. The pressure of the cooling air is greater than that of the hot gases and since the air is directed outwards across the faces of the turbine discs, it prevents the hot exhaust gases flowing inwards across the discs. Overheating of the turbine discs is thus prevented.

DIFFERENTIAL PRESSURE SEALS

We know that we require high pressure cooling air at the turbine discs (to reduce the flow of hot exhaust gases across the discs) and low-pressure air at bearing seals (to prevent leakage of oil without undue aeration of the oil). The air at these different pressures must be prevented from mixing and thus, becoming equalised in pressure. This is done by inserting differential pressure seals at appropriate points in the system; these seals are of a multi-groove rotating type.

 


Related Discussions:- Air-system in aircraft engine

Fibre optics communications, explain the fibre optic communication system w...

explain the fibre optic communication system with block diagram

Controller requirements, Controller Requirements  The requirements for ...

Controller Requirements  The requirements for the stability and performance of fight control systems are specified in the certi-fication requirements for U.S. civilian aircraft

Homework, What are the no-arbitrage lower bound, and the no-arbitrage upper...

What are the no-arbitrage lower bound, and the no-arbitrage upper bound, of the vertical spread C(k1) - C(k2) ?

Electronics devices and circuits, With the help of circuit diagram and the ...

With the help of circuit diagram and the waveforms,explain the working of a negative clipper with positive biasing voltage.also explain the Same concept in series clipper circuit

.quantifying financial risk, What is the standard deviation of return if we...

What is the standard deviation of return if we have the following two possible outcomes: a rise of 8.00 per cent with 0.58 probability or a fall of -6.00 per cent?

representing vectors in different axes, Representing vectors in different ...

Representing vectors in different axes All positions, velocities, momentums and accelerations are really relative positions, relative velocities, relative momentums and relativ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd