Abstract model for an algorithm solving a problem, Theory of Computation

Assignment Help:

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third number. We can systematically list all instances along with all possible solutions by systematically listing all triples of numbers. This is not completely trivial-we can't, for instance, list all triples starting with 0 and then all triples starting with 1, etc. Since there are in?nitely many triples starting with zero, we would never get around to listing any starting with one. Suppose, though, that we are only concerned with the Natural Numbers, {0, 1, . . .}. If we ?rst list all triples that sum to zero (i.e., just the triple h0, 0, 0i) and then all triples that sum to one (i.e., h1, 0, 0i, h0, 1, 0i, h0, 0, 1i), etc., we are guaranteed that we will eventually list any given triple.

With the exception of the assumption that the solution is unique (which can be fudged in a variety of ways) these assumptions are pretty nearly minimal. We can't even consider solving a problem algorithmically unless every instance has a solution. An algorithm must produce some answer for every instance. If there is no answer for some instance, then whatever answer it produces will necessarily be wrong. (Note that if we modify the problem to require that we return "No Solution" in the case that none exists, we will have converted it into a problem that has a solution for every instance-albeit one that sometimes has the solution "No Solution".) The third assumption is true of every reasonable problem. In fact, it takes a fairamount of the theory of computation to even get to the point where we can argue that problems that don't satisfy the assumption might exist. Under these assumptions we can reduce our model to a machine for checking the correctness of solutions:

1809_Abstract model for an algorithm solving a problem.png


Related Discussions:- Abstract model for an algorithm solving a problem

# Help, #Your company has 25 licenses for a computer program, but you disco...

#Your company has 25 licenses for a computer program, but you discover that it has been copied onto 80 computers. You informed your supervisor, but he/she is not willing to take an

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Regular languages, LTO was the closure of LT under concatenation and Boolea...

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

Venkatesh, What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkf...

What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkfjfnfmkrjrbfbbfjfnfjruhrvrjkgktithhrbenfkiffnbr ki rnrjjdjrnrk bd n FBC..jcb?????????????????????????????????????????

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd