Abstract model for an algorithm solving a problem, Theory of Computation

Assignment Help:

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third number. We can systematically list all instances along with all possible solutions by systematically listing all triples of numbers. This is not completely trivial-we can't, for instance, list all triples starting with 0 and then all triples starting with 1, etc. Since there are in?nitely many triples starting with zero, we would never get around to listing any starting with one. Suppose, though, that we are only concerned with the Natural Numbers, {0, 1, . . .}. If we ?rst list all triples that sum to zero (i.e., just the triple h0, 0, 0i) and then all triples that sum to one (i.e., h1, 0, 0i, h0, 1, 0i, h0, 0, 1i), etc., we are guaranteed that we will eventually list any given triple.

With the exception of the assumption that the solution is unique (which can be fudged in a variety of ways) these assumptions are pretty nearly minimal. We can't even consider solving a problem algorithmically unless every instance has a solution. An algorithm must produce some answer for every instance. If there is no answer for some instance, then whatever answer it produces will necessarily be wrong. (Note that if we modify the problem to require that we return "No Solution" in the case that none exists, we will have converted it into a problem that has a solution for every instance-albeit one that sometimes has the solution "No Solution".) The third assumption is true of every reasonable problem. In fact, it takes a fairamount of the theory of computation to even get to the point where we can argue that problems that don't satisfy the assumption might exist. Under these assumptions we can reduce our model to a machine for checking the correctness of solutions:

1809_Abstract model for an algorithm solving a problem.png


Related Discussions:- Abstract model for an algorithm solving a problem

Third model of computation, Computer has a single LIFO stack containing ?xe...

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Assignment, Consider a water bottle vending machine as a finite–state autom...

Consider a water bottle vending machine as a finite–state automaton. This machine is designed to accept coins of Rs. 2 and 5 only. It dispenses a single water bottle as soon as the

Sketch an algorithm for recognizing language, Suppose A = (Σ, T) is an SL 2...

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

Myhill-nerode theorem, This close relationship between the SL2 languages an...

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Closure properties to prove regularity, The fact that regular languages are...

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Answer, And what this money. Invovle who it involves and the fact of,how we...

And what this money. Invovle who it involves and the fact of,how we got itself identified candidate and not withstanding time date location. That shouts me media And answers who''v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd