+1-415-670-9189
info@expertsmind.com
Mathematics in computing
Course:- Computer Engineering
Reference No.:- EM13208




Assignment Help
Expertsmind Rated 4.9 / 5 based on 47215 reviews.
Review Site
Assignment Help >> Computer Engineering

1. The degree(v) of a pendant vertex may be either one or zero. 

     T  or  F 

2. A tree is any connected, undirected graph with an odd number of vertices. 

     T  or  F 

3. A simple graph is an undirected graph with multiple edges but no loops. 

     T  or  F 

4. A multigraph is an undirected graph with multiple edges and no loops. 

     T  or  F 

5. Consider the following directed relations on {1, 2, 3, 4} :

           R = {(1,1), (2,2), (3,3), (4,4)}

           S = {(1,4), (2,3), (3,2), (4,1)}

           R is reflexive and S is symmetric

     T  or  F

6.  Set A is divided into several disjoint partitions.  The UNION of these partitions is the original set.

     T  or  F

7. A W23 has 24 vertices and 46 edges. 

     T  or  F

8. The root of any tree must be at either level 1 (one) or level 0 (zero). 

     T  or  F 

9. A leaf is a vertex with just one child. 

     T  or  F 

10. A weighted graph has a value assigned to each edge. 

     T  or  F 

11. The minimum spanning tree of a weighted graph is a graph that

    is drawn with the length of each edge roughly proportional to

    the value assigned to each edge. 

     T  or  F 

12. Siblings must have the same parent but not necessarily the same level. 

     T  or  F 

13. Since Prim's and Kruskal's algorithms generate the minimum spanning tree of a given weighted graph, each algorithm would always

    provide identical MST solutions. 

     T  or  F 

14. A bipartite graph Kn,m has (n+m) vertices and a maximum of

    (n*m) edges. 

     T  or  F

PART B

1. Form a binary search tree from the words of the following sentence using alphabetical order and inserting words as they appear in the sentence: 

   This test is easier than the last because it is much shorter. 

2. The expression below is in postfix expression form.  Determine its numerical value. 

      { -4,  6,  -,  7,  5,  *,  2,  *,  / }   

3. Determine if Graph Z is bipartite.  Defend your answer.

4. Define a postorder and preorder traversal of the following:

          [(3 - 2y) * 5 ] - [(y - 3) ^ 6) ]  . 

       a. postorder: 

       b. preorder: 

5. Determine the Minimal Spanning Tree in Graph X using Kruskal's

Algorithm.  All edges must be labeled from lower to higher named vertices, e.g., from "c" to "d" but not from "d" to "c".

6. Given the coding scheme:

     a:001, b:0001, e:1, r:0000, s: 0100, t:011, x:01010

   Find the words represented by:  (1 point each)

   a. 0010000011

   b. 001010101

   c. 01110100011

   d. 0001110000

   e. What is the best compression ratio (versus ASCII 8-bit encoding) of the words in a through d above? (2 points).  Defend your answer.

7. Determine the Minimum Spanning Tree in Graph Y. Use Prim's Algorithm in which all edges must be labeled from lower to higher named vertices, e.g., from "c" to "d" but not from "d" to "c"

8. Construct a postorder, inorder and preorder transversal of Tree T.

    a. postorder:  

    b. inorder: 

    c: preorder: 

9. Are Graphs G and H isomorphic?  Defend your answer. 

10. Suppose that a full 41-ary tree has 4 internal vertices.  How many leaves does it have?  Defend your answer.

11. What is the shortest path in Graph S between "a" and "z".  Use Dijkstra's algorithm.

     a. the shortest path is: 

     b. the shortest distance between  "a"  and  "z"  is: 

12. A tree has 37 edges.  How many vertices does it have?

                  EXTRA CREDIT - OPTIONAL

DO ONE of the following: 

A.

Use a greedy algorithm to determine the shortest path in Graph S.  The algorithm starts at vertex "a" and ends at vertex "z" always selecting the shortest edge.  The selection must be in ascending lexicographic order, i.e., m to n  - not n to m.  See discussion on pages 195, 232, and 798.

B.

      Is the solution using Prim's Algorithm in Question B.5 the same topology and length as the required Kruskal solution?

 GRAPH  INFORMATION 

Graph G 

Initially draw a hexagon with vertices a-b-d-f-e-c-a. 

Connect vertices a to f; b to c; d to e. 

        b           d 

 

a                          f 

 

        c           e 

 

Graph H 

Initially draw a hexagon with vertices u-v-w-x-y-z-u. 

Connect vertices u to x; v to y; w to z. 

There is no connection in the center. 

                 u 

 

    z                         v 

 

 

    y                         w

                 x

Graph S 

Initially draw a hexagon with vertices a-b-d-z-e-c-a. 

Connect vertices b to c; b to e; c to d; d to e.

Edge values are: 

  a-b = 3; a-c = 4; 

  b-c = 1; b-d = 5; b-e = 5 

  c-d = 2; c-e = 4; 

  d-e = 1; d-z = 5; e-z = 3. 

 

             b            d 

 

    a                              z 

 

             c            e 

 

Tree T 

Construct a Tree with 

 vertex a at level 0; 

 vertices b, c and d at level 1; 

 vertices e, f, i, j, and k at level 2; 

 vertices g, h, l and m at level 3. 

Connect vertex a to b, a to c, and a to d. 

Connect vertex b to e and f. 

Connect vertex c (no further connection). 

Connect vertex d to i, j and k.

Connect vertex e to g.

Connect vertex f to h.  

Connect vertex i (no further connection).

Connect vertex j (no further connection).

Connect vertex k to l and m.

Connect vertex g, h, l and m (no further connection).

                 a 

 

       b         c         d 

 

    e     f           i    j    k 

 

    g     h                   l   m

 

Graph X 

Initially draw a rectangle with vertices a-c-e-z-d-b-a. 

Connect vertices a to d; c to d; d to e. 

Edge values are:  

  a-b = 1; a-c = 4; a-d =3; 

  b-d = 3; c-d = 3; c-e = 2; 

  d-e = 1; d-z = 2; e-z = 2. 

 

  a         c        e 

 

 

  b         d        z 

 

Graph Y 

Draw a hexagon with vertices a-b-d-z-e-c-a. 

Connect vertices b to c; b to z; d to e. 

Edge values are:

  a-b = 3; a-c = 5;

  b-c = 2; b-d = 5; b-z = 4;

  c-e = 5;

  d-e = 1; d-z = 7; e-z = 3. 

 

             b            d 

 

    a                              z 

 

             c            e 

 

Graph Z

Graph Z is a five-pointed figure.

Connect a to b, a to c and a to e.

Connect b to d.

Connect c to d.

Connect d to e.

 

           b            c

 

   a                             d

 

 

                 e




Put your comment
 
Minimize


Ask Question & Get Answers from Experts
Browse some more (Computer Engineering) Materials
Provide an example of a set F of functional dependencies and a schema R such that R consists of 2 attributes and R is not in 3NF. If you cannot do that, describe why you can
cola wars continue:coke and pepsi in 2010 1. Understanding the underlying economics of an industry and their relationship to average profits. 2. Understanding the relationship
Promotion time is coming around the corner. In the last board meeting, your supervisor has asked someone to make a list of tables for a Fernandos Skate Shop customer orders.
Write down the sites which will discuss the ongoing responsibilities of security manager, can be adapted for use within the security management model?
CS 109 - C/C ++ Programming for Engineers w. MatLab- Spring 2016 Assignment. For this assignment you are to write a simple computer program to evaluate a function of 2 variab
however there are complex encryption techniques, you should come up with a simple one of your own. For example, you could read the first file one character at a time, and ad
To present a static model of system, create a diagram for a layered architecture view of system. Using components you identified in your layered view of the system, create a
Write down the program that prints out the chains for numbers within the range which the user specifies. The length of each chain must be printed at the end of the chain.