+1-415-670-9189
info@expertsmind.com
Automatic control
Course:- Mechanical Engineering
Reference No.:- EM13251




Assignment Help
Expertsmind Rated 4.9 / 5 based on 47215 reviews.
Review Site
Assignment Help >> Mechanical Engineering

Question: The two DOF system below has two moving masses M1, M2 with an input force of f(t) applied to M . The characteristics of the system are as follows:

459_Automatic Control.png

Note: the friction forces fv1 and fv2 can be thought of as damping forces.

298_Automatic Control1.png

a) Derive the system's dynamics (the governing differential equations) using the Lagrangian method

b) For an output of x1(t) and a state vector of x = 894_Automatic Control2.pngfind the A, B, C and D matrices

Question: Consider the transfer function:

1307_Automatic Control3.png

a) Find the differential equation describing the system

b) Write the state and output equation's in Observer Canonical (Left Companion)

c) Draw the block diagram of the system (using the form from part b above); how many states are observable?

Question: In the case of an inverted pendulum shown below, the equations of motion for control are a function of the movement in the horizontal direction and the angular motion of the bob. The angle of the bob is assumed to be sufficiently low to provide a linear model of the system.

2390_Automatic Control4.png

The properties of the system are as follows:

• M- Mass of Cart (5 kg)
• m- Mass (the bob) at end of rod (0.1 kg)
• θ- angular displacement of rod from vertical
• y- displacement in horizontal direction
• l- length of rod (0.5 m)

The sum of the forces in the horizontal direction can be shown to be:

1465_Automatic Control5.png                                 (1)

By approximating the pendulum as a point mass, the sum of the moments about the pivot point is:

2044_Automatic Control6.png                             (2)

By rearranging equations (1) and (2) and simplifying by assuming M >> m then the state and input matrices are:

2232_Automatic Control7.png

1518_Automatic Control8.png

With a state vector given by:

985_Automatic Control9.png

a) What is the rank of the A matrix and what does this tell you about the states used in the state space model? Relate this to the dynamic equations

b) For an output of θ the minimal realisation of the system will have a 2x2 A matrix. For this minimal realisation find the A, B, C, D matrices and the state vector

c) Find the eigenvalues of the system from the state-space model derived in b)

d) Sketch the poles of the system on the complex plane

e) Is the system stable?

f) Using the state space model from b) find the transfer function




Put your comment
 
Minimize


Ask Question & Get Answers from Experts
Browse some more (Mechanical Engineering) Materials
Water enters one stream of an unmixed stream heat exchanger at 20°C and increases in temperature by 10°C. Air enters the second stream on the heat exchanger at 400°C and 5 kg/
A rigid container of 0.1 m3 and negligible heat capacity contains steam at 500 kPa and 400C. If the container is cooled, determine the pressure and temperature at which steam
Consider the air conditioning of a house through use of solar energy. At a particular location, experiment has shown that solar radiation allows a large tank of pressurized wa
A rigid tank contains 5 kg of an ideal gas at atm and 40° C. Now valve is open, and half of mass of the gas is allowed to escape. If the final pressure in the tank is 1.5 at
Wet stream (Saturated liquid-vapor mixture) at 2.00 Mpa is the initial state of a constant enthalpy process. The end state is at 0.100 Mpa, 150?. Determine the quality of the
Maturated water vapor at 800 kPa is isothermally condensed to a saturated liquid in a piston-cylinder device. Calculate the amount of heat transferred during this process.
a beam consists of three planks connected as shown by 3/8 in diameter bolts spaced every 12in.along the longitudinal axis of the beam.knowing that the beam is subjected to a
Decide which of the four fiber materi- als are possible candidates for this application, and for each candidate determine the required inside diameter consistent with the ab